Understanding Deep Learning via Notions of Rank
- URL: http://arxiv.org/abs/2408.02111v2
- Date: Sun, 13 Oct 2024 12:22:58 GMT
- Title: Understanding Deep Learning via Notions of Rank
- Authors: Noam Razin,
- Abstract summary: This thesis puts forth notions of rank as key for developing a theory of deep learning.
In particular, we establish that gradient-based training can induce an implicit regularization towards low rank for several neural network architectures.
Practical implications of our theory for designing explicit regularization schemes and data preprocessing algorithms are presented.
- Score: 5.439020425819001
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the extreme popularity of deep learning in science and industry, its formal understanding is limited. This thesis puts forth notions of rank as key for developing a theory of deep learning, focusing on the fundamental aspects of generalization and expressiveness. In particular, we establish that gradient-based training can induce an implicit regularization towards low rank for several neural network architectures, and demonstrate empirically that this phenomenon may facilitate an explanation of generalization over natural data (e.g., audio, images, and text). Then, we characterize the ability of graph neural networks to model interactions via a notion of rank, which is commonly used for quantifying entanglement in quantum physics. A central tool underlying these results is a connection between neural networks and tensor factorizations. Practical implications of our theory for designing explicit regularization schemes and data preprocessing algorithms are presented.
Related papers
- Collective variables of neural networks: empirical time evolution and scaling laws [0.535514140374842]
We show that certain measures on the spectrum of the empirical neural tangent kernel, specifically entropy and trace, yield insight into the representations learned by a neural network.
Results are demonstrated first on test cases before being shown on more complex networks, including transformers, auto-encoders, graph neural networks, and reinforcement learning studies.
arXiv Detail & Related papers (2024-10-09T21:37:14Z) - Foundations and Frontiers of Graph Learning Theory [81.39078977407719]
Recent advancements in graph learning have revolutionized the way to understand and analyze data with complex structures.
Graph Neural Networks (GNNs), i.e. neural network architectures designed for learning graph representations, have become a popular paradigm.
This article provides a comprehensive summary of the theoretical foundations and breakthroughs concerning the approximation and learning behaviors intrinsic to prevalent graph learning models.
arXiv Detail & Related papers (2024-07-03T14:07:41Z) - The semantic landscape paradigm for neural networks [0.0]
We introduce the semantic landscape paradigm, a conceptual and mathematical framework that describes the training dynamics of neural networks.
Specifically, we show that grokking and emergence with scale are associated with percolation phenomena, and neural scaling laws are explainable in terms of the statistics of random walks on graphs.
arXiv Detail & Related papers (2023-07-18T18:48:54Z) - Deep Learning Meets Sparse Regularization: A Signal Processing
Perspective [17.12783792226575]
We present a mathematical framework that characterizes the functional properties of neural networks that are trained to fit to data.
Key mathematical tools which support this framework include transform-domain sparse regularization, the Radon transform of computed tomography, and approximation theory.
This framework explains the effect of weight decay regularization in neural network training, the use of skip connections and low-rank weight matrices in network architectures, the role of sparsity in neural networks, and explains why neural networks can perform well in high-dimensional problems.
arXiv Detail & Related papers (2023-01-23T17:16:21Z) - How You Start Matters for Generalization [26.74340246715699]
We show that the generalization of neural networks is heavily tied to their initializes.
We make a case against the controversial flat-minima conjecture.
arXiv Detail & Related papers (2022-06-17T05:30:56Z) - Rank Diminishing in Deep Neural Networks [71.03777954670323]
Rank of neural networks measures information flowing across layers.
It is an instance of a key structural condition that applies across broad domains of machine learning.
For neural networks, however, the intrinsic mechanism that yields low-rank structures remains vague and unclear.
arXiv Detail & Related papers (2022-06-13T12:03:32Z) - What can linearized neural networks actually say about generalization? [67.83999394554621]
In certain infinitely-wide neural networks, the neural tangent kernel (NTK) theory fully characterizes generalization.
We show that the linear approximations can indeed rank the learning complexity of certain tasks for neural networks.
Our work provides concrete examples of novel deep learning phenomena which can inspire future theoretical research.
arXiv Detail & Related papers (2021-06-12T13:05:11Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
This paper focuses on an alternative way of defining Neural Networks, that is different from the majority of existing approaches.
The structure of the neural architecture is defined by means of a special class of constraints that are extended also to the interaction with data.
The proposed theory is cast into the time domain, in which data are presented to the network in an ordered manner.
arXiv Detail & Related papers (2020-09-01T09:07:25Z) - A Chain Graph Interpretation of Real-World Neural Networks [58.78692706974121]
We propose an alternative interpretation that identifies NNs as chain graphs (CGs) and feed-forward as an approximate inference procedure.
The CG interpretation specifies the nature of each NN component within the rich theoretical framework of probabilistic graphical models.
We demonstrate with concrete examples that the CG interpretation can provide novel theoretical support and insights for various NN techniques.
arXiv Detail & Related papers (2020-06-30T14:46:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.