論文の概要: Quantifying the Cross-sectoral Intersecting Discrepancies within Multiple Groups Using Latent Class Analysis Towards Fairness
- arxiv url: http://arxiv.org/abs/2407.03133v2
- Date: Thu, 11 Jul 2024 09:19:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 22:08:28.057366
- Title: Quantifying the Cross-sectoral Intersecting Discrepancies within Multiple Groups Using Latent Class Analysis Towards Fairness
- Title(参考訳): フェアネスを指向した潜在クラス分析による複数グループ間の交叉断面積の定量化
- Authors: Yingfang Yuan, Kefan Chen, Mehdi Rizvi, Lynne Baillie, Wei Pang,
- Abstract要約: 本研究は,クロスセクタ間差分を定量化するための革新的アプローチを導入する。
プロプライエタリなデータセットとパブリックなデータセットの両方を使用して、私たちのアプローチを検証する。
我々の発見は、少数民族間の大きな相違が明らかとなり、現実世界のAIアプリケーションにおいて標的となる介入の必要性が浮かび上がっている。
- 参考スコア(独自算出の注目度): 6.683051393349788
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing interest in fair AI development is evident. The ''Leave No One Behind'' initiative urges us to address multiple and intersecting forms of inequality in accessing services, resources, and opportunities, emphasising the significance of fairness in AI. This is particularly relevant as an increasing number of AI tools are applied to decision-making processes, such as resource allocation and service scheme development, across various sectors such as health, energy, and housing. Therefore, exploring joint inequalities in these sectors is significant and valuable for thoroughly understanding overall inequality and unfairness. This research introduces an innovative approach to quantify cross-sectoral intersecting discrepancies among user-defined groups using latent class analysis. These discrepancies can be used to approximate inequality and provide valuable insights to fairness issues. We validate our approach using both proprietary and public datasets, including EVENS and Census 2021 (England & Wales) datasets, to examine cross-sectoral intersecting discrepancies among different ethnic groups. We also verify the reliability of the quantified discrepancy by conducting a correlation analysis with a government public metric. Our findings reveal significant discrepancies between minority ethnic groups, highlighting the need for targeted interventions in real-world AI applications. Additionally, we demonstrate how the proposed approach can be used to provide insights into the fairness of machine learning.
- Abstract(参考訳): 公正なAI開発への関心が高まっていることは明らかだ。
この'Leave No One Behind'イニシアチブは、サービス、リソース、機会へのアクセスにおける不平等の多様かつ交差する形態に対処し、AIにおける公平性の重要性を強調します。
これは、リソース割り当てやサービススキーム開発といった意思決定プロセスに適用されるAIツールの数が、健康、エネルギー、住宅など、さまざまな分野にまたがって増加していることに関連している。
したがって、これらの分野における共同不平等の探求は、全体的な不平等と不公平を徹底的に理解するために重要かつ価値のあるものである。
本研究では、潜在クラス分析を用いて、ユーザ定義グループ間でのクロスセクタ間交差の差異を定量化する革新的な手法を提案する。
これらの相違は不等式を近似し、公平性問題に対する貴重な洞察を与えるために用いられる。
EVENS と Census 2021 (England & Wales) のデータセットを含む,プロプライエタリなデータセットとパブリックなデータセットの両方を用いて,異なる民族集団間の相互交差不一致を検証した。
また、官公立計量と相関分析を行うことにより、定量化の不一致の信頼性を検証した。
我々の発見は、少数民族間の大きな相違が明らかとなり、現実世界のAIアプリケーションにおいて標的となる介入の必要性が浮かび上がっている。
さらに、機械学習の公平性に関する洞察を提供するために、提案手法をどのように利用できるかを実証する。
関連論文リスト
- A Survey on Group Fairness in Federated Learning: Challenges, Taxonomy of Solutions and Directions for Future Research [5.08731160761218]
機械学習におけるグループフェアネスは、異なるグループ間で平等な結果を達成することに焦点を当てた研究の重要領域である。
フェデレーション学習は、クライアント間の不均一なデータ分散による公平性の必要性を増幅する。
連合学習におけるグループフェアネスの総合的な調査は行われていない。
データパーティショニング、ロケーション、適用戦略といった重要な基準に基づいて、これらのアプローチの新しい分類法を作成します。
論文 参考訳(メタデータ) (2024-10-04T18:39:28Z) - Fairness meets Cross-Domain Learning: a new perspective on Models and
Metrics [80.07271410743806]
クロスドメイン学習(CD)とモデルフェアネスの関係について検討する。
いくつかの人口集団にまたがる顔画像と医療画像のベンチマークと、分類とローカライゼーションタスクについて紹介する。
本研究は,3つの最先端フェアネスアルゴリズムとともに,14のCDアプローチをカバーし,前者が後者に勝ることを示す。
論文 参考訳(メタデータ) (2023-03-25T09:34:05Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
センシティブな属性の無意識下でのグループフェアネスを測定する問題に取り組む。
定量化手法は, フェアネスと無意識の問題に対処するのに特に適していることを示す。
論文 参考訳(メタデータ) (2021-09-17T13:45:46Z) - Explaining Algorithmic Fairness Through Fairness-Aware Causal Path
Decomposition [37.823248189626014]
本稿では,モデルの相違点の同定問題について検討する。
特徴重要度を学習する既存の解釈方法とは異なり,特徴変数間の因果関係を考察する。
我々のフレームワークはまた、モデルに依存しないものであり、様々な量的格差の尺度に適用できる。
論文 参考訳(メタデータ) (2021-08-11T17:23:47Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
機械学習におけるマルチグループフェアネスの研究(MultiFair)
この問題を解決するために,汎用的なエンドツーエンドのアルゴリズムフレームワークを提案する。
提案するフレームワークは多くの異なる設定に一般化可能である。
論文 参考訳(メタデータ) (2021-05-24T02:30:22Z) - Through the Data Management Lens: Experimental Analysis and Evaluation
of Fair Classification [75.49600684537117]
データ管理研究は、データとアルゴリズムの公平性に関連するトピックに対する存在感と関心が高まっている。
我々は,その正しさ,公平性,効率性,スケーラビリティ,安定性よりも,13の公正な分類アプローチと追加の変種を幅広く分析している。
我々の分析は、異なるメトリクスとハイレベルなアプローチ特性がパフォーマンスの異なる側面に与える影響に関する新しい洞察を強調します。
論文 参考訳(メタデータ) (2021-01-18T22:55:40Z) - Towards Fair Knowledge Transfer for Imbalanced Domain Adaptation [61.317911756566126]
本研究では,不均衡なドメイン間学習における公平性問題に対処するTowards Fair Knowledge Transferフレームワークを提案する。
具体的には、新規なクロスドメインミックスアップ生成を利用して、ターゲット情報でマイノリティソースセットを増強し、公正性を高める。
本モデルでは,2つのベンチマークで全体の精度を20%以上向上させる。
論文 参考訳(メタデータ) (2020-10-23T06:29:09Z) - No computation without representation: Avoiding data and algorithm
biases through diversity [11.12971845021808]
学術的および専門的なコンピューティング分野における多様性の欠如と、データセットで発生するバイアスのタイプと幅の関連性を引き合いに出す。
これらの教訓を利用して、コンピューティングコミュニティが多様性を高めるための具体的なステップを提供するレコメンデーションを開発する。
論文 参考訳(メタデータ) (2020-02-26T23:07:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。