Machine Learning Models for Improved Tracking from Range-Doppler Map Images
- URL: http://arxiv.org/abs/2407.03140v1
- Date: Wed, 3 Jul 2024 14:20:24 GMT
- Title: Machine Learning Models for Improved Tracking from Range-Doppler Map Images
- Authors: Elizabeth Hou, Ross Greenwood, Piyush Kumar,
- Abstract summary: We propose novel machine learning models for target detection and uncertainty estimation in range-Doppler map (RDM) images for Ground Moving Target Indicator (GMTI) radars.
We show that by using the outputs of these models, we can significantly improve the performance of a multiple hypothesis tracker for complex multi-target air-to-ground tracking scenarios.
- Score: 1.3654846342364306
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Statistical tracking filters depend on accurate target measurements and uncertainty estimates for good tracking performance. In this work, we propose novel machine learning models for target detection and uncertainty estimation in range-Doppler map (RDM) images for Ground Moving Target Indicator (GMTI) radars. We show that by using the outputs of these models, we can significantly improve the performance of a multiple hypothesis tracker for complex multi-target air-to-ground tracking scenarios.
Related papers
- Continuously Optimizing Radar Placement with Model Predictive Path Integrals [16.148347437965683]
Continuously optimizing sensor placement is essential for precise target localization in various military and civilian applications.
We employ a range measurement model that incorporates radar parameters and radar-target distance.
We visualize the evolving geometry of radars and targets over time, highlighting areas of highest measurement information gain.
arXiv Detail & Related papers (2024-05-29T11:25:53Z) - RTracker: Recoverable Tracking via PN Tree Structured Memory [71.05904715104411]
We propose a recoverable tracking framework, RTracker, that uses a tree-structured memory to dynamically associate a tracker and a detector to enable self-recovery.
Specifically, we propose a Positive-Negative Tree-structured memory to chronologically store and maintain positive and negative target samples.
Our core idea is to use the support samples of positive and negative target categories to establish a relative distance-based criterion for a reliable assessment of target loss.
arXiv Detail & Related papers (2024-03-28T08:54:40Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - DICE: Diverse Diffusion Model with Scoring for Trajectory Prediction [7.346307332191997]
We present a novel framework that leverages diffusion models for predicting future trajectories in a computationally efficient manner.
We employ an efficient sampling mechanism that allows us to maximize the number of sampled trajectories for improved accuracy.
We show the effectiveness of our approach by conducting empirical evaluations on common pedestrian (UCY/ETH) and autonomous driving (nuScenes) benchmark datasets.
arXiv Detail & Related papers (2023-10-23T05:04:23Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - An End-to-End Framework of Road User Detection, Tracking, and Prediction
from Monocular Images [11.733622044569486]
We build an end-to-end framework for detection, tracking, and trajectory prediction called ODTP.
It adopts the state-of-the-art online multi-object tracking model, QD-3DT, for perception and trains the trajectory predictor, DCENet++, directly based on the detection results.
We evaluate the performance of ODTP on the widely used nuScenes dataset for autonomous driving.
arXiv Detail & Related papers (2023-08-09T15:46:25Z) - Diffusion Models for Multi-target Adversarial Tracking [0.49157446832511503]
Target tracking plays a crucial role in real-world scenarios, particularly in drug-trafficking interdiction.
As unmanned drones proliferate, accurate autonomous target estimation is even more crucial for security and safety.
This paper presents Constrained Agent-based Diffusion for Enhanced Multi-Agent Tracking (CADENCE), an approach aimed at generating comprehensive predictions of adversary locations.
arXiv Detail & Related papers (2023-07-12T15:34:39Z) - MONCE Tracking Metrics: a comprehensive quantitative performance
evaluation methodology for object tracking [0.0]
We propose a suite of MONCE (Multi-Object Non-Contiguous Entities) image tracking metrics that provide both objective tracking model performance benchmarks as well as diagnostic insight for driving tracking model development.
arXiv Detail & Related papers (2022-04-11T17:32:03Z) - Transforming Model Prediction for Tracking [109.08417327309937]
Transformers capture global relations with little inductive bias, allowing it to learn the prediction of more powerful target models.
We train the proposed tracker end-to-end and validate its performance by conducting comprehensive experiments on multiple tracking datasets.
Our tracker sets a new state of the art on three benchmarks, achieving an AUC of 68.5% on the challenging LaSOT dataset.
arXiv Detail & Related papers (2022-03-21T17:59:40Z) - Tracking-by-Counting: Using Network Flows on Crowd Density Maps for
Tracking Multiple Targets [96.98888948518815]
State-of-the-art multi-object tracking(MOT) methods follow the tracking-by-detection paradigm.
We propose a new MOT paradigm, tracking-by-counting, tailored for crowded scenes.
arXiv Detail & Related papers (2020-07-18T19:51:53Z) - ArTIST: Autoregressive Trajectory Inpainting and Scoring for Tracking [80.02322563402758]
One of the core components in online multiple object tracking (MOT) frameworks is associating new detections with existing tracklets.
We introduce a probabilistic autoregressive generative model to score tracklet proposals by directly measuring the likelihood that a tracklet represents natural motion.
arXiv Detail & Related papers (2020-04-16T06:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.