論文の概要: Venomancer: Towards Imperceptible and Target-on-Demand Backdoor Attacks in Federated Learning
- arxiv url: http://arxiv.org/abs/2407.03144v2
- Date: Thu, 11 Jul 2024 06:29:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 22:08:28.054741
- Title: Venomancer: Towards Imperceptible and Target-on-Demand Backdoor Attacks in Federated Learning
- Title(参考訳): Venomancer:フェデレートラーニングにおける非知覚的かつ目標的バックドアアタックを目指して
- Authors: Son Nguyen, Thinh Nguyen, Khoa D Doan, Kok-Seng Wong,
- Abstract要約: 本稿では,効果的なバックドア攻撃であるVenomancerを提案する。
この方法は、Norm Clipping、Wak DP、Krum、Multi-Krum、RLR、FedRAD、Deepsight、RFLBATといった最先端の防御に対して堅牢である。
- 参考スコア(独自算出の注目度): 16.04315589280155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) is a distributed machine learning approach that maintains data privacy by training on decentralized data sources. Similar to centralized machine learning, FL is also susceptible to backdoor attacks, where an attacker can compromise some clients by injecting a backdoor trigger into local models of those clients, leading to the global model's behavior being manipulated as desired by the attacker. Most backdoor attacks in FL assume a predefined target class and require control over a large number of clients or knowledge of benign clients' information. Furthermore, they are not imperceptible and are easily detected by human inspection due to clear artifacts left on the poison data. To overcome these challenges, we propose Venomancer, an effective backdoor attack that is imperceptible and allows target-on-demand. Specifically, imperceptibility is achieved by using a visual loss function to make the poison data visually indistinguishable from the original data. Target-on-demand property allows the attacker to choose arbitrary target classes via conditional adversarial training. Additionally, experiments showed that the method is robust against state-of-the-art defenses such as Norm Clipping, Weak DP, Krum, Multi-Krum, RLR, FedRAD, Deepsight, and RFLBAT. The source code is available at https://github.com/nguyenhongson1902/Venomancer.
- Abstract(参考訳): Federated Learning(FL)は、分散型データソースのトレーニングによってデータのプライバシを維持する分散機械学習アプローチである。
集中型機械学習と同様に、FLはバックドア攻撃にも感受性があり、攻撃者はそれらのクライアントのローカルモデルにバックドアトリガーを注入することで、一部のクライアントを妥協することができる。
FLのバックドア攻撃のほとんどは、事前に定義されたターゲットクラスを前提としており、多数のクライアントの制御や、良心的なクライアントの情報に関する知識を必要とする。
また、毒データに残されている鮮明な遺物により、人体検査により容易に検出される。
これらの課題を克服するために,我々は,効果的なバックドア攻撃であるVenomancerを提案する。
具体的には、視覚的損失関数を用いて、毒データを元のデータと視覚的に区別できるようにする。
Target-on-demandプロパティにより、攻撃者は条件付き逆行訓練によって任意のターゲットクラスを選択することができる。
さらに,Norm Clipping,Weak DP,Krum,Multi-Krum,RLR,FedRAD,Deepsight,RFLBATなど,最先端の防御に対して堅牢であることを示した。
ソースコードはhttps://github.com/nguyenhongson1902/Venomancerで入手できる。
関連論文リスト
- EmInspector: Combating Backdoor Attacks in Federated Self-Supervised Learning Through Embedding Inspection [53.25863925815954]
フェデレートされた自己教師付き学習(FSSL)は、クライアントの膨大な量の未ラベルデータの利用を可能にする、有望なパラダイムとして登場した。
FSSLはアドバンテージを提供するが、バックドア攻撃に対する感受性は調査されていない。
ローカルモデルの埋め込み空間を検査し,悪意のあるクライアントを検知する埋め込み検査器(EmInspector)を提案する。
論文 参考訳(メタデータ) (2024-05-21T06:14:49Z) - Concealing Backdoor Model Updates in Federated Learning by Trigger-Optimized Data Poisoning [20.69655306650485]
Federated Learning(FL)は、参加者がプライベートデータを共有せずに、協力的にモデルをトレーニングできる分散型機械学習手法である。
プライバシーとスケーラビリティの利点にもかかわらず、FLはバックドア攻撃の影響を受けやすい。
本稿では,バックドアトリガの最適化によりバックドア目標を動的に構築する,FLのバックドア攻撃戦略であるDPOTを提案する。
論文 参考訳(メタデータ) (2024-05-10T02:44:25Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
フェデレーション学習は、プライバシを損なうことなく、分散化されたデータソースからの学習を可能にする。
悪意のあるクライアントがトレーニングプロセスに干渉する、毒殺攻撃のモデル化には脆弱である。
我々はFedDefenderと呼ばれるクライアントサイドに焦点を当てた新しい防御機構を提案し、クライアントの堅牢なローカルモデルのトレーニングを支援する。
論文 参考訳(メタデータ) (2023-07-18T08:00:41Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
バックドアアタックは、訓練段階の脅威を脅かしている。
軽度で目に見えないバックドアアタック(SIBA)を提案する。
論文 参考訳(メタデータ) (2023-05-11T10:05:57Z) - DABS: Data-Agnostic Backdoor attack at the Server in Federated Learning [14.312593000209693]
フェデレートラーニング(FL)は、中央サーバの協調の下で、分散デバイスからローカルモデルを集約することで、グローバルモデルをトレーニングしようとする試みである。
多数の異種デバイスが存在するため、FLは様々な攻撃、特にステルスなバックドア攻撃に対して脆弱である。
我々は,サーバがグローバルモデルを直接変更して,FLシステムにバックドアを施すような,FLの新たなアタックモデル,すなわち,サーバにおけるData-Agnostic Backdoor attack(DABS)を提案する。
論文 参考訳(メタデータ) (2023-05-02T09:04:34Z) - Backdoor Defense via Deconfounded Representation Learning [17.28760299048368]
我々は、信頼性の高い分類のための非定型表現を学ぶために、因果性に着想を得たバックドアディフェンス(CBD)を提案する。
CBDは、良性サンプルの予測において高い精度を維持しながら、バックドアの脅威を減らすのに有効である。
論文 参考訳(メタデータ) (2023-03-13T02:25:59Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
我々は,タスク特性に基づいて,無目標で毒のみのバックドア攻撃を設計する。
攻撃によって、バックドアがターゲットモデルに埋め込まれると、トリガーパターンでスタンプされたオブジェクトの検出を失う可能性があることを示す。
論文 参考訳(メタデータ) (2022-11-02T17:05:45Z) - Backdoor Attack and Defense in Federated Generative Adversarial
Network-based Medical Image Synthesis [15.41200827860072]
フェデレートラーニング(FL)は、分散データを使用して、生データをローカルに保持しながら、中央モデルをトレーニングする方法を提供する。
バックドア攻撃には弱いが、訓練データに毒を盛ることによる敵の攻撃である。
ほとんどのバックドア攻撃戦略は、分類モデルと集中型ドメインに焦点を当てている。
本稿では,FL設定におけるバックドア攻撃を効果的かつ効果的に防御するFedDetectを提案する。
論文 参考訳(メタデータ) (2022-10-19T21:03:34Z) - CrowdGuard: Federated Backdoor Detection in Federated Learning [39.58317527488534]
本稿では,フェデレートラーニングにおけるバックドア攻撃を効果的に軽減する新しい防御機構であるCrowdGuardを提案する。
CrowdGuardでは、サーバロケーションのスタック化されたクラスタリングスキームを使用して、クライアントからのフィードバックに対するレジリエンスを高めている。
評価結果は、CrowdGuardがさまざまなシナリオで100%正の正の正の正の負の負の負の値を達成することを示す。
論文 参考訳(メタデータ) (2022-10-14T11:27:49Z) - Sleeper Agent: Scalable Hidden Trigger Backdoors for Neural Networks
Trained from Scratch [99.90716010490625]
バックドア攻撃者は、トレーニングデータを改ざんして、そのデータに基づいてトレーニングされたモデルに脆弱性を埋め込む。
この脆弱性は、モデル入力に"トリガー"を配置することで、推論時にアクティベートされる。
我々は,工芸過程において,勾配マッチング,データ選択,ターゲットモデル再トレーニングを利用した新しい隠れトリガ攻撃,Sleeper Agentを開発した。
論文 参考訳(メタデータ) (2021-06-16T17:09:55Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
モデルへのクエリアクセスのみを用いてバックドア攻撃を同定するブラックボックスバックドア検出(B3D)手法を提案する。
バックドア検出に加えて,同定されたバックドアモデルを用いた信頼性の高い予測手法を提案する。
論文 参考訳(メタデータ) (2021-03-24T12:06:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。