Venomancer: Towards Imperceptible and Target-on-Demand Backdoor Attacks in Federated Learning
- URL: http://arxiv.org/abs/2407.03144v2
- Date: Thu, 11 Jul 2024 06:29:06 GMT
- Title: Venomancer: Towards Imperceptible and Target-on-Demand Backdoor Attacks in Federated Learning
- Authors: Son Nguyen, Thinh Nguyen, Khoa D Doan, Kok-Seng Wong,
- Abstract summary: We propose Venomancer, an effective backdoor attack that is imperceptible and allows target-on-demand.
The method is robust against state-of-the-art defenses such as Norm Clipping, Weak DP, Krum, Multi-Krum, RLR, FedRAD, Deepsight, and RFLBAT.
- Score: 16.04315589280155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) is a distributed machine learning approach that maintains data privacy by training on decentralized data sources. Similar to centralized machine learning, FL is also susceptible to backdoor attacks, where an attacker can compromise some clients by injecting a backdoor trigger into local models of those clients, leading to the global model's behavior being manipulated as desired by the attacker. Most backdoor attacks in FL assume a predefined target class and require control over a large number of clients or knowledge of benign clients' information. Furthermore, they are not imperceptible and are easily detected by human inspection due to clear artifacts left on the poison data. To overcome these challenges, we propose Venomancer, an effective backdoor attack that is imperceptible and allows target-on-demand. Specifically, imperceptibility is achieved by using a visual loss function to make the poison data visually indistinguishable from the original data. Target-on-demand property allows the attacker to choose arbitrary target classes via conditional adversarial training. Additionally, experiments showed that the method is robust against state-of-the-art defenses such as Norm Clipping, Weak DP, Krum, Multi-Krum, RLR, FedRAD, Deepsight, and RFLBAT. The source code is available at https://github.com/nguyenhongson1902/Venomancer.
Related papers
- EmInspector: Combating Backdoor Attacks in Federated Self-Supervised Learning Through Embedding Inspection [53.25863925815954]
Federated self-supervised learning (FSSL) has emerged as a promising paradigm that enables the exploitation of clients' vast amounts of unlabeled data.
While FSSL offers advantages, its susceptibility to backdoor attacks has not been investigated.
We propose the Embedding Inspector (EmInspector) that detects malicious clients by inspecting the embedding space of local models.
arXiv Detail & Related papers (2024-05-21T06:14:49Z) - Concealing Backdoor Model Updates in Federated Learning by Trigger-Optimized Data Poisoning [20.69655306650485]
Federated Learning (FL) is a decentralized machine learning method that enables participants to collaboratively train a model without sharing their private data.
Despite its privacy and scalability benefits, FL is susceptible to backdoor attacks.
We propose DPOT, a backdoor attack strategy in FL that dynamically constructs backdoor objectives by optimizing a backdoor trigger.
arXiv Detail & Related papers (2024-05-10T02:44:25Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
Federated learning enables learning from decentralized data sources without compromising privacy.
It is vulnerable to model poisoning attacks, where malicious clients interfere with the training process.
We propose a new defense mechanism that focuses on the client-side, called FedDefender, to help benign clients train robust local models.
arXiv Detail & Related papers (2023-07-18T08:00:41Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
backdoor attack is an emerging yet threatening training-phase threat.
We propose a sparse and invisible backdoor attack (SIBA)
arXiv Detail & Related papers (2023-05-11T10:05:57Z) - DABS: Data-Agnostic Backdoor attack at the Server in Federated Learning [14.312593000209693]
Federated learning (FL) attempts to train a global model by aggregating local models from distributed devices under the coordination of a central server.
The existence of a large number of heterogeneous devices makes FL vulnerable to various attacks, especially the stealthy backdoor attack.
We propose a new attack model for FL, namely Data-Agnostic Backdoor attack at the Server (DABS), where the server directly modifies the global model to backdoor an FL system.
arXiv Detail & Related papers (2023-05-02T09:04:34Z) - Backdoor Defense via Deconfounded Representation Learning [17.28760299048368]
We propose a Causality-inspired Backdoor Defense (CBD) to learn deconfounded representations for reliable classification.
CBD is effective in reducing backdoor threats while maintaining high accuracy in predicting benign samples.
arXiv Detail & Related papers (2023-03-13T02:25:59Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - Backdoor Attack and Defense in Federated Generative Adversarial
Network-based Medical Image Synthesis [15.41200827860072]
Federated learning (FL) provides a way of training a central model using distributed data while keeping raw data locally.
It is vulnerable to backdoor attacks, an adversarial by poisoning training data.
Most backdoor attack strategies focus on classification models and centralized domains.
We propose FedDetect, an efficient and effective way of defending against the backdoor attack in the FL setting.
arXiv Detail & Related papers (2022-10-19T21:03:34Z) - CrowdGuard: Federated Backdoor Detection in Federated Learning [39.58317527488534]
This paper presents a novel defense mechanism, CrowdGuard, that effectively mitigates backdoor attacks in Federated Learning.
CrowdGuard employs a server-located stacked clustering scheme to enhance its resilience to rogue client feedback.
The evaluation results demonstrate that CrowdGuard achieves a 100% True-Positive-Rate and True-Negative-Rate across various scenarios.
arXiv Detail & Related papers (2022-10-14T11:27:49Z) - Sleeper Agent: Scalable Hidden Trigger Backdoors for Neural Networks
Trained from Scratch [99.90716010490625]
Backdoor attackers tamper with training data to embed a vulnerability in models that are trained on that data.
This vulnerability is then activated at inference time by placing a "trigger" into the model's input.
We develop a new hidden trigger attack, Sleeper Agent, which employs gradient matching, data selection, and target model re-training during the crafting process.
arXiv Detail & Related papers (2021-06-16T17:09:55Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
We propose a black-box backdoor detection (B3D) method to identify backdoor attacks with only query access to the model.
In addition to backdoor detection, we also propose a simple strategy for reliable predictions using the identified backdoored models.
arXiv Detail & Related papers (2021-03-24T12:06:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.