Category-Aware Dynamic Label Assignment with High-Quality Oriented Proposal
- URL: http://arxiv.org/abs/2407.03205v1
- Date: Wed, 3 Jul 2024 15:36:47 GMT
- Title: Category-Aware Dynamic Label Assignment with High-Quality Oriented Proposal
- Authors: Mingkui Feng, Hancheng Yu, Xiaoyu Dang, Ming Zhou,
- Abstract summary: In this paper, an OBB representation based on the complex plane is introduced in the oriented detection framework.
A conformer RPN head is constructed to predict angle information.
The proposed loss function and conformer RPN head jointly generate high-quality oriented proposals.
- Score: 17.674175038655058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Objects in aerial images are typically embedded in complex backgrounds and exhibit arbitrary orientations. When employing oriented bounding boxes (OBB) to represent arbitrary oriented objects, the periodicity of angles could lead to discontinuities in label regression values at the boundaries, inducing abrupt fluctuations in the loss function. To address this problem, an OBB representation based on the complex plane is introduced in the oriented detection framework, and a trigonometric loss function is proposed. Moreover, leveraging prior knowledge of complex background environments and significant differences in large objects in aerial images, a conformer RPN head is constructed to predict angle information. The proposed loss function and conformer RPN head jointly generate high-quality oriented proposals. A category-aware dynamic label assignment based on predicted category feedback is proposed to address the limitations of solely relying on IoU for proposal label assignment. This method makes negative sample selection more representative, ensuring consistency between classification and regression features. Experiments were conducted on four realistic oriented detection datasets, and the results demonstrate superior performance in oriented object detection with minimal parameter tuning and time costs. Specifically, mean average precision (mAP) scores of 82.02%, 71.99%, 69.87%, and 98.77% were achieved on the DOTA-v1.0, DOTA-v1.5, DIOR-R, and HRSC2016 datasets, respectively.
Related papers
- SOOD++: Leveraging Unlabeled Data to Boost Oriented Object Detection [59.868772767818975]
We propose a simple yet effective Semi-supervised Oriented Object Detection method termed SOOD++.
Specifically, we observe that objects from aerial images are usually arbitrary orientations, small scales, and aggregation.
Extensive experiments conducted on various multi-oriented object datasets under various labeled settings demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-07-01T07:03:51Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Metric-aligned Sample Selection and Critical Feature Sampling for
Oriented Object Detection [4.677438149607058]
We introduce affine transformation to evaluate the quality of samples and propose a distance-based label assignment strategy.
The proposed metric-aligned selection (MAS) strategy can dynamically select samples according to the shape and rotation characteristic of objects.
The results show the state-of-the-art accuracy of the proposed detector.
arXiv Detail & Related papers (2023-06-29T06:36:46Z) - ARS-DETR: Aspect Ratio-Sensitive Detection Transformer for Aerial Oriented Object Detection [55.291579862817656]
Existing oriented object detection methods commonly use metric AP$_50$ to measure the performance of the model.
We argue that AP$_50$ is inherently unsuitable for oriented object detection due to its large tolerance in angle deviation.
We propose an Aspect Ratio Sensitive Oriented Object Detector with Transformer, termed ARS-DETR, which exhibits a competitive performance.
arXiv Detail & Related papers (2023-03-09T02:20:56Z) - Anchor Retouching via Model Interaction for Robust Object Detection in
Aerial Images [15.404024559652534]
We present an effective Dynamic Enhancement Anchor (DEA) network to construct a novel training sample generator.
Our method achieves state-of-the-art performance in accuracy with moderate inference speed and computational overhead for training.
arXiv Detail & Related papers (2021-12-13T14:37:20Z) - Anchor-free Oriented Proposal Generator for Object Detection [59.54125119453818]
Oriented object detection is a practical and challenging task in remote sensing image interpretation.
Nowadays, oriented detectors mostly use horizontal boxes as intermedium to derive oriented boxes from them.
We propose a novel Anchor-free Oriented Proposal Generator (AOPG) that abandons the horizontal boxes-related operations from the network architecture.
arXiv Detail & Related papers (2021-10-05T10:45:51Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
This paper explores a relatively less-studied methodology based on classification.
We propose new techniques to push its frontier in two aspects.
Experiments and visual analysis on large-scale public datasets for aerial images show the effectiveness of our approach.
arXiv Detail & Related papers (2020-11-19T05:42:02Z) - On the Arbitrary-Oriented Object Detection: Classification based
Approaches Revisited [94.5455251250471]
We first show that the boundary problem suffered in existing dominant regression-based rotation detectors, is caused by angular periodicity or corner ordering.
We transform the angular prediction task from a regression problem to a classification one.
For the resulting circularly distributed angle classification problem, we first devise a Circular Smooth Label technique to handle the periodicity of angle and increase the error tolerance to adjacent angles.
arXiv Detail & Related papers (2020-03-12T03:23:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.