SOOD++: Leveraging Unlabeled Data to Boost Oriented Object Detection
- URL: http://arxiv.org/abs/2407.01016v1
- Date: Mon, 1 Jul 2024 07:03:51 GMT
- Title: SOOD++: Leveraging Unlabeled Data to Boost Oriented Object Detection
- Authors: Dingkang Liang, Wei Hua, Chunsheng Shi, Zhikang Zou, Xiaoqing Ye, Xiang Bai,
- Abstract summary: We propose a simple yet effective Semi-supervised Oriented Object Detection method termed SOOD++.
Specifically, we observe that objects from aerial images are usually arbitrary orientations, small scales, and aggregation.
Extensive experiments conducted on various multi-oriented object datasets under various labeled settings demonstrate the effectiveness of our method.
- Score: 59.868772767818975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised object detection (SSOD), leveraging unlabeled data to boost object detectors, has become a hot topic recently. However, existing SSOD approaches mainly focus on horizontal objects, leaving multi-oriented objects common in aerial images unexplored. At the same time, the annotation cost of multi-oriented objects is significantly higher than that of their horizontal counterparts. Therefore, in this paper, we propose a simple yet effective Semi-supervised Oriented Object Detection method termed SOOD++. Specifically, we observe that objects from aerial images are usually arbitrary orientations, small scales, and aggregation, which inspires the following core designs: a Simple Instance-aware Dense Sampling (SIDS) strategy is used to generate comprehensive dense pseudo-labels; the Geometry-aware Adaptive Weighting (GAW) loss dynamically modulates the importance of each pair between pseudo-label and corresponding prediction by leveraging the intricate geometric information of aerial objects; we treat aerial images as global layouts and explicitly build the many-to-many relationship between the sets of pseudo-labels and predictions via the proposed Noise-driven Global Consistency (NGC). Extensive experiments conducted on various multi-oriented object datasets under various labeled settings demonstrate the effectiveness of our method. For example, on the DOTA-V1.5 benchmark, the proposed method outperforms previous state-of-the-art (SOTA) by a large margin (+2.92, +2.39, and +2.57 mAP under 10%, 20%, and 30% labeled data settings, respectively) with single-scale training and testing. More importantly, it still improves upon a strong supervised baseline with 70.66 mAP, trained using the full DOTA-V1.5 train-val set, by +1.82 mAP, resulting in a 72.48 mAP, pushing the new state-of-the-art. The code will be made available.
Related papers
- Multi-clue Consistency Learning to Bridge Gaps Between General and Oriented Object in Semi-supervised Detection [26.486535389258965]
We experimentally find three gaps between general and oriented object detection in semi-supervised learning.
We propose a Multi-clue Consistency Learning (MCL) framework to bridge these gaps.
Our proposed MCL can achieve state-of-the-art performance in the semi-supervised oriented object detection task.
arXiv Detail & Related papers (2024-07-08T13:14:25Z) - Category-Aware Dynamic Label Assignment with High-Quality Oriented Proposal [17.674175038655058]
In this paper, an OBB representation based on the complex plane is introduced in the oriented detection framework.
A conformer RPN head is constructed to predict angle information.
The proposed loss function and conformer RPN head jointly generate high-quality oriented proposals.
arXiv Detail & Related papers (2024-07-03T15:36:47Z) - USD: Unknown Sensitive Detector Empowered by Decoupled Objectness and
Segment Anything Model [14.080744645704751]
Open World Object Detection (OWOD) is a novel and challenging computer vision task.
We propose a simple yet effective learning strategy, namely Decoupled Objectness Learning (DOL), which divides the learning of these two boundaries into decoder layers.
We also introduce an Auxiliary Supervision Framework (ASF) that uses a pseudo-labeling and a soft-weighting strategies to alleviate the negative impact of noise.
arXiv Detail & Related papers (2023-06-04T06:42:09Z) - SOOD: Towards Semi-Supervised Oriented Object Detection [57.05141794402972]
This paper proposes a novel Semi-supervised Oriented Object Detection model, termed SOOD, built upon the mainstream pseudo-labeling framework.
Our experiments show that when trained with the two proposed losses, SOOD surpasses the state-of-the-art SSOD methods under various settings on the DOTA-v1.5 benchmark.
arXiv Detail & Related papers (2023-04-10T11:10:42Z) - Anchor Retouching via Model Interaction for Robust Object Detection in
Aerial Images [15.404024559652534]
We present an effective Dynamic Enhancement Anchor (DEA) network to construct a novel training sample generator.
Our method achieves state-of-the-art performance in accuracy with moderate inference speed and computational overhead for training.
arXiv Detail & Related papers (2021-12-13T14:37:20Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z) - AutoAssign: Differentiable Label Assignment for Dense Object Detection [94.24431503373884]
Auto COCO is an anchor-free detector for object detection.
It achieves appearance-aware through a fully differentiable weighting mechanism.
Our best model achieves 52.1% AP, outperforming all existing one-stage detectors.
arXiv Detail & Related papers (2020-07-07T14:32:21Z) - Dynamic Refinement Network for Oriented and Densely Packed Object
Detection [75.29088991850958]
We present a dynamic refinement network that consists of two novel components, i.e., a feature selection module (FSM) and a dynamic refinement head (DRH)
Our FSM enables neurons to adjust receptive fields in accordance with the shapes and orientations of target objects, whereas the DRH empowers our model to refine the prediction dynamically in an object-aware manner.
We perform quantitative evaluations on several publicly available benchmarks including DOTA, HRSC2016, SKU110K, and our own SKU110K-R dataset.
arXiv Detail & Related papers (2020-05-20T11:35:50Z) - EHSOD: CAM-Guided End-to-end Hybrid-Supervised Object Detection with
Cascade Refinement [53.69674636044927]
We present EHSOD, an end-to-end hybrid-supervised object detection system.
It can be trained in one shot on both fully and weakly-annotated data.
It achieves comparable results on multiple object detection benchmarks with only 30% fully-annotated data.
arXiv Detail & Related papers (2020-02-18T08:04:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.