論文の概要: Efficient Visibility Approximation for Game AI using Neural Omnidirectional Distance Fields
- arxiv url: http://arxiv.org/abs/2407.03330v1
- Date: Thu, 9 May 2024 11:44:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 22:18:55.478967
- Title: Efficient Visibility Approximation for Game AI using Neural Omnidirectional Distance Fields
- Title(参考訳): ニューラルネットワークを用いたゲームAIの高能率可視性近似
- Authors: Zhi Ying, Nicholas Edwards, Mikhail Kutuzov,
- Abstract要約: 分割されたゲームシーンをニューラルOmnidirectional Distance Fields(ODF)として表現する新しい手法を提案する。
各位置について、球面からの全方位距離データをUV面にマッピングする。
次に、多分解能グリッドと双線形補間機能を使って方向を符号化する。
オフライン実験とゲーム内評価により,本手法の有効性を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visibility information is critical in game AI applications, but the computational cost of raycasting-based methods poses a challenge for real-time systems. To address this challenge, we propose a novel method that represents a partitioned game scene as neural Omnidirectional Distance Fields (ODFs), allowing scalable and efficient visibility approximation between positions without raycasting. For each position of interest, we map its omnidirectional distance data from the spherical surface onto a UV plane. We then use multi-resolution grids and bilinearly interpolated features to encode directions. This allows us to use a compact multi-layer perceptron (MLP) to reconstruct the high-frequency directional distance data at these positions, ensuring fast inference speed. We demonstrate the effectiveness of our method through offline experiments and in-game evaluation. For in-game evaluation, we conduct a side-by-side comparison with raycasting-based visibility tests in three different scenes. Using a compact MLP (128 neurons and 2 layers), our method achieves an average cold start speedup of 9.35 times and warm start speedup of 4.8 times across these scenes. In addition, unlike the raycasting-based method, whose evaluation time is affected by the characteristics of the scenes, our method's evaluation time remains constant.
- Abstract(参考訳): 可視性情報はゲームAIアプリケーションでは重要であるが、レイキャスト方式の計算コストはリアルタイムシステムにおいて課題となる。
この課題に対処するために、分割されたゲームシーンをニューラルなOmnidirectional Distance Fields (ODF) として表現する新しい手法を提案する。
各位置について、球面からの全方位距離データをUV面にマッピングする。
次に、多分解能グリッドと双線形補間機能を使って方向を符号化する。
これにより、コンパクトな多層パーセプトロン(MLP)を用いて、これらの位置における高周波方向距離データを再構成し、高速な推論速度を確保することができる。
オフライン実験とゲーム内評価により,本手法の有効性を実証する。
ゲーム内評価では,3つの場面でレイキャスティングに基づく可視性テストと並べて比較する。
小型MLP (128ニューロンと2層) を用いて, 平均冷間開始速度は9.35倍, 温間開始速度は4.8倍となる。
また,映像の特徴によって評価時間が影響を受けるレイキャスト方式とは異なり,評価時間は一定である。
関連論文リスト
- Unlocking the Performance of Proximity Sensors by Utilizing Transient
Histograms [20.994250740256458]
近距離時間(ToF)距離センサのクラスで捉えた一過性ヒストグラムを利用して平面風景形状を復元する手法を提案する。
過渡ヒストグラム(Transient histogram)は、ToFセンサに入射した光子の到着時刻を符号化した1次元の時間波形である。
本稿では,ロボットアームのエンドエフェクタに装着したセンサから平面面の距離と傾斜を計測するために,本手法を用いたシンプルなロボット工学アプリケーションを実演する。
論文 参考訳(メタデータ) (2023-08-25T16:20:41Z) - Fast Monocular Scene Reconstruction with Global-Sparse Local-Dense Grids [84.90863397388776]
本稿では,スパルス・ボクセル・ブロック・グリッドにおける署名付き距離関数(SDF)を直接使用して,距離のない高速かつ正確なシーン再構成を実現することを提案する。
我々の世界規模で疎密で局所的なデータ構造は、表面の空間的空間性を利用して、キャッシュフレンドリーなクエリを可能にし、マルチモーダルデータへの直接拡張を可能にします。
実験により、我々のアプローチはトレーニングでは10倍、レンダリングでは100倍高速であり、最先端のニューラル暗黙法に匹敵する精度を実現していることがわかった。
論文 参考訳(メタデータ) (2023-05-22T16:50:19Z) - Multiscale Representation for Real-Time Anti-Aliasing Neural Rendering [84.37776381343662]
Mip-NeRFは、スケール情報をエンコードする円錐フラストラムとしてマルチスケール表現を提案する。
我々は,リアルタイムなアンチエイリアスレンダリングのためのマルチスケールな明示的表現であるmip voxel grids (Mip-VoG)を提案する。
私たちのアプローチは、マルチスケールのトレーニングとリアルタイムのアンチエイリアスレンダリングを同時に提供する最初の方法です。
論文 参考訳(メタデータ) (2023-04-20T04:05:22Z) - BEVStereo: Enhancing Depth Estimation in Multi-view 3D Object Detection
with Dynamic Temporal Stereo [15.479670314689418]
本稿では,マッチング候補のスケールを動的に選択するための効果的な時間ステレオ手法を提案する。
我々は、より価値のある候補を更新するための反復アルゴリズムを設計し、移動可能な候補に適応する。
BEVStereoは、nuScenesデータセットのカメラのみのトラックで、最先端のパフォーマンスを新たに達成する。
論文 参考訳(メタデータ) (2022-09-21T10:21:25Z) - Differentiable Point-Based Radiance Fields for Efficient View Synthesis [57.56579501055479]
本稿では,効率的な新規ビュー合成のための微分可能レンダリングアルゴリズムを提案する。
我々の手法は、トレーニングと推論の両方において、NeRFよりも最大300倍高速である。
ダイナミックなシーンでは,STNeRFよりも2桁早く,ほぼインタラクティブなレートでレンダリングを行う。
論文 参考訳(メタデータ) (2022-05-28T04:36:13Z) - iSDF: Real-Time Neural Signed Distance Fields for Robot Perception [64.80458128766254]
iSDFは実時間符号付き距離場再構成のための連続学習システムである。
より正確な再構築と、衝突コストと勾配のより良い近似を生成する。
論文 参考訳(メタデータ) (2022-04-05T15:48:39Z) - Monocular Camera Localization for Automated Vehicles Using Image
Retrieval [8.594652891734288]
本研究では,1台のカメラを用いて,自動運転車の現在位置と方向角をリアルタイムで検出する問題に対処する。
リアルタイムにLiDARと高精細3Dマップを必要とする手法と比較して,提案手法はスケーラブルで計算効率がよい。
論文 参考訳(メタデータ) (2021-09-13T20:12:42Z) - Displacement-Invariant Cost Computation for Efficient Stereo Matching [122.94051630000934]
ディープラーニング手法は、前例のない不一致の精度を得ることによって、ステレオマッチングのリーダーボードを支配してきた。
しかし、その推測時間は一般的に540p画像の秒数で遅い。
本研究では,4次元特徴量を必要としないEmphdisplacement-invariant cost moduleを提案する。
論文 参考訳(メタデータ) (2020-12-01T23:58:16Z) - End-to-end Learning for Inter-Vehicle Distance and Relative Velocity
Estimation in ADAS with a Monocular Camera [81.66569124029313]
本稿では,ディープニューラルネットワークのエンドツーエンドトレーニングに基づくカメラによる車間距離と相対速度推定手法を提案する。
提案手法の重要な特徴は,2つの時間的単眼フレームによって提供される複数の視覚的手がかりの統合である。
また,移動場における視線歪みの影響を緩和する車両中心サンプリング機構を提案する。
論文 参考訳(メタデータ) (2020-06-07T08:18:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。