2500 vibronic eigenstates of the NO$_3$ radical
- URL: http://arxiv.org/abs/2407.03398v2
- Date: Mon, 16 Sep 2024 18:00:15 GMT
- Title: 2500 vibronic eigenstates of the NO$_3$ radical
- Authors: Henrik R. Larsson, Alexandra Viel,
- Abstract summary: We revisit the vibronic spectrum associated with the electronic $tilde X 2A'$ state.
For the antisymmetric bending motion we find remarkably large symmetry-induced level splittings.
We discuss non-negligible nonadiabatic effects and show that the Born-Oppenheimer approximation leads to significant errors in the spectrum.
- Score: 49.1574468325115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The nitrate radical NO$_3$ plays an important role in atmospheric chemistry, yet many aspects of its coupled and anharmonic vibronic structure remain elusive. Here, using an accurate, coupled full-dimensional diabatic potential that includes five electronic states, we revisit the vibronic spectrum associated with the electronic $\tilde X ^2A_2'$ state. Using recently developed tensor network state methods, we are able to compute more than 2500 vibronic states, thereby increasing the number of computed full-dimensional states by a factor of 50, compared to previous work. While we obtain good agreement with experiment for most of the assigned vibronic levels, for several others, we observe striking disagreement. Further, for the antisymmetric bending motion we find remarkably large symmetry-induced level splittings that are larger than the zero-order reference. We discuss non-negligible nonadiabatic effects and show that the Born-Oppenheimer approximation leads to significant errors in the spectrum.
Related papers
- Improved constraints on exotic interactions between electron and proton in hydrogen [0.0]
Atomic spectroscopy can be used to search for new bosons that carry exotic forces between elementary fermions.
A comparison of a recent precise measurement of the hyperfine splitting of the 2S$_1/2$ electronic levels of hydrogen and up-to-date bound-state quantum electrodynamics theory yields improved constraints.
arXiv Detail & Related papers (2024-08-20T17:03:33Z) - Spectral signatures of vibronic coupling in trapped cold atomic Rydberg
systems [0.5492495595636527]
Atoms and ions confined with electric and optical fields form the basis of many current quantum simulation and computing platforms.
We discuss the case of two trapped Rydberg ions, for which the interaction between the relative vibrations and Rydberg states realizes a quantum Rabi model.
arXiv Detail & Related papers (2023-11-28T17:50:00Z) - Low-energy electron-induced ion-pair dissociation to
"Trilobite-resembling" long-range heavy Rydberg system [0.0]
We have studied electron-induced ion-pair dissociation dynamics of CO using the state-of-art velocity map imaging technique.
We have directly detected the existence of S-wave resonated Trilobite resembling a novel molecular binding energy mechanism.
arXiv Detail & Related papers (2022-08-30T08:07:59Z) - Computational Insights into Electronic Excitations, Spin-Orbit Coupling
Effects, and Spin Decoherence in Cr(IV)-based Molecular Qubits [63.18666008322476]
We provide insights into key properties of Cr(IV)-based molecules aimed at assisting chemical design of efficient molecular qubits.
We find that the sign of the uniaxial zero-field splitting (ZFS) parameter is negative for all considered molecules.
We quantify (super)hyperfine coupling to the $53$Cr nuclear spin and to the $13C and $1H nuclear spins.
arXiv Detail & Related papers (2022-05-01T01:23:10Z) - Dynamics of Transmon Ionization [94.70553167084388]
We numerically explore the dynamics of a driven transmon-resonator system under strong and nearly resonant measurement drives.
We find clear signatures of transmon ionization where the qubit escapes out of its cosine potential.
arXiv Detail & Related papers (2022-03-21T18:00:15Z) - Generalization of the Tavis-Cummings model for multi-level anharmonic
systems: insights on the second excitation manifold [0.0]
This work contrasts predictions from the Tavis-Cummings (TC) model, in which the material is a collection of two-level systems.
We simplify the brute-force diagonalization of a gigantic $N2times N2$ Hamiltonian.
We find resonant conditions between bipolaritons and anharmonic transitions where two-photon absorption can be enhanced.
arXiv Detail & Related papers (2022-02-03T06:33:42Z) - Rovibrational structure of the Ytterbium monohydroxide molecule and the
$\mathcal{P}$,$\mathcal{T}$-violation searches [68.8204255655161]
The energy gap between levels of opposite parity, $l$-doubling, is of a great interest.
The influence of the bending and stretching modes on the sensitivities to the $mathcalP$,$mathcalT$-violation requires a thorough investigation.
arXiv Detail & Related papers (2021-08-25T20:12:31Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Vibrational and vibronic structure of isolated point defects: the
nitrogen-vacancy center in diamond [0.0]
We present a theoretical study of vibrational and vibronic properties of a point defect in the dilute limit.
As an exemplar we choose the negatively charged nitrogen-vacancy center, a solid-state system that has served as a testbed for many protocols of quantum technology.
arXiv Detail & Related papers (2020-12-08T09:48:00Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.