Observation of Resonant Tunneling from Molecular Shape into Vibronic Feshbach Resonances Followed by Mode-Specific Fragmentation
- URL: http://arxiv.org/abs/2505.00532v1
- Date: Thu, 01 May 2025 13:58:23 GMT
- Title: Observation of Resonant Tunneling from Molecular Shape into Vibronic Feshbach Resonances Followed by Mode-Specific Fragmentation
- Authors: Narayan Kundu, Meenakshi Rana, Aryya Ghosh, Dhananjay Nandi,
- Abstract summary: We present a kinematically complete study of dissociative electron attachment (DEA) in linear OCS molecules.<n>DEA is dominated by molecular shape resonances, where transient OCS$-$ states form with high vibrational amplitudes.<n>Our results deepen our understanding of resonance-mediated dissociation in electron-molecule resonant scattering.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a kinematically complete study of dissociative electron attachment (DEA) in linear OCS molecules, focusing on how electrons resonantly attach and trigger dissociation. Near the Franck-Condon regime, DEA is dominated by molecular shape resonances, where transient OCS$^-$ states form with high vibrational amplitudes, spectroscopically evident as broad features in DEA cross-sections. As the electron beam energy increases from 5.5 to 6.0 eV, S$^-$ population shifts from lower to higher-energy highly dense bending vibrational states, reinforcing our findings on dipole-forbidden vibronic intensity borrowing. Our advanced potential energy curve calculations, employing the Equation-of-motion coupled cluster singles and doubles for electron attachment (EA-EOMCCSD) method, reveal that beyond the shape resonance, non-adiabatic resonant tunneling governs the avoided crossings, dynamically generating three mode-specific vibronic Feshbach resonances before complete dissociation into three distinct kinetic energy bands of S$^-$. Our theoretical results probe most of the experimental observations quantitatively and qualitatively. These insights deepen our fundamental understanding of resonance-mediated dissociation in electron-molecule resonant scattering, with broader implications for quantum mechanics, plasma physics, vibrational revival, astrochemistry, and radiation damage research.
Related papers
- 2500 vibronic eigenstates of the NO$_3$ radical [49.1574468325115]
We revisit the vibronic spectrum associated with the electronic $tilde X 2A'$ state.
For the antisymmetric bending motion we find remarkably large symmetry-induced level splittings.
We discuss non-negligible nonadiabatic effects and show that the Born-Oppenheimer approximation leads to significant errors in the spectrum.
arXiv Detail & Related papers (2024-07-03T18:00:00Z) - Ab-Initio Vibro-Polaritonic Spectra in Strongly Coupled Cavity-Molecule
Systems [0.0]
We present an ab-initio methodology, based on the cavity Born-Oppenheimer Hartree-Fock ansatz, to calculate vibro-polaritonic IR spectra.
Our semi-classical approach, validated against full quantum simulations, reproduces key features of the vibro-polaritonic spectra.
arXiv Detail & Related papers (2023-10-03T08:16:21Z) - Spectral splitting of a stimulated Raman transition in a single molecule [0.0]
We exploit the high Franck-Condon factor of a common-mode resonance to drive a coherent stimulated Raman transition in individual molecules.
Our study sets the ground for exploiting the intrinsic optomechanical degrees of freedom of molecules for applications in solid-state quantum optics and information processing.
arXiv Detail & Related papers (2023-02-28T16:37:18Z) - Driving Force and Nonequilibrium Vibronic Dynamics in Charge Separation
of Strongly Bound Electron-Hole Pairs [59.94347858883343]
We study the dynamics of charge separation in one, two and three-dimensional donor-acceptor networks.
This allows us to identify the precise conditions in which underdamped vibrational motion induces efficient long-range charge separation.
arXiv Detail & Related papers (2022-05-11T17:51:21Z) - Dynamics of Transmon Ionization [94.70553167084388]
We numerically explore the dynamics of a driven transmon-resonator system under strong and nearly resonant measurement drives.
We find clear signatures of transmon ionization where the qubit escapes out of its cosine potential.
arXiv Detail & Related papers (2022-03-21T18:00:15Z) - High-resolution vibronic spectroscopy of a single molecule embedded in a
crystal [0.0]
Vibrational levels of the electronic ground states in dye molecules have not been previously explored at high resolution in solid matrices.
We present new spectroscopic measurements on single polycyclic aromatic molecules of dibenzoterrylene embedded in an organic crystal made of para-dichlorobenzene.
arXiv Detail & Related papers (2021-12-09T09:56:05Z) - Cavity-modified unimolecular dissociation reactions via intramolecular
vibrational energy redistribution [0.0]
We show that an optical cavity resonantly coupled to particular anharmonic vibrational modes can interfere with unimolecular dissociation reaction rates.
In particular, when the cavity is initially empty, the dissociation rate decreases, while when the cavity is initially hotter than the molecule, the cavity can instead accelerate the reaction rate.
arXiv Detail & Related papers (2021-09-09T14:37:39Z) - Molecular polaritonics in dense mesoscopic disordered ensembles [0.3058685580689604]
We study the dependence of the vacuum Rabi splitting (VRS) on frequency disorder, vibrations, near-field effects and density in molecular polaritonics.
arXiv Detail & Related papers (2020-10-14T15:16:08Z) - Effects of Conical Intersections on Hyperfine Quenching of Hydroxyl OH
in collision with an ultracold Sr atom [62.60678272919008]
We report on ultracold collision dynamics of the hydroxyl free-radical OH with Sr atoms leading to quenching of OH hyperfine states.
Our quantum-mechanical calculations of this process reveal that quenching is efficient due to anomalous molecular dynamics in the vicinity of the conical intersection.
arXiv Detail & Related papers (2020-06-26T23:27:25Z) - Effect of phonons on the electron spin resonance absorption spectrum [62.997667081978825]
We model the effect of phonons and temperature on the electron spin resonance (ESR) signal in magnetically active systems.
We find that the suppression of ESR signals is due to phonon broadening but not based on the common assumption of orbital quenching.
arXiv Detail & Related papers (2020-04-22T01:13:07Z) - The Shape of the Electric Dipole Function Determines the Sub-Picosecond
Dynamics of Anharmonic Vibrational Polaritons [0.0]
We describe for the first time the essential role of permanent dipole moments in the femtosecond dynamics of vibrational polariton wavepackets.
We propose a non-adiabatic state preparation scheme to generate vibrational polaritons using nanoscale infrared antennas and UV-vis photochemistry or electron tunneling.
arXiv Detail & Related papers (2020-03-17T15:55:09Z) - Optical Magnetometer: Quantum Resonances at pumping repetition rate of
1/n of the Larmor frequency [58.720142291102135]
Quantum sub-resonances at a repetition rate of $1/n$ of the Larmor frequency of the magnetic field inside the shield are experimentally observed and theoretically explained.
Investigations in single alkali atoms cells as well as mixed alkali atoms of K and Rb are presented.
arXiv Detail & Related papers (2020-02-20T09:14:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.