Revealing symmetries in quantum computing for many-body systems
- URL: http://arxiv.org/abs/2407.03452v1
- Date: Wed, 3 Jul 2024 18:53:09 GMT
- Title: Revealing symmetries in quantum computing for many-body systems
- Authors: Robert van Leeuwen,
- Abstract summary: We deduce the symmetry properties of many-body Hamiltonians when they are prepared in Jordan-Wigner form for evaluation on quantum computers.
We prove a general theorem that provides a straightforward method to calculate the transformation of Pauli tensor strings under symmetry operations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a method to deduce the symmetry properties of many-body Hamiltonians when they are prepared in Jordan-Wigner form for evaluation on quantum computers. Symmetries, such as point-group symmetries in molecules, are apparent in the standard second quantized form of the Hamiltonian. They are, however, masked when the Hamiltonian is translated into a Pauli matrix representation required for its operation on qubits. To reveal these symmetries we prove a general theorem that provides a straightforward method to calculate the transformation of Pauli tensor strings under symmetry operations. They are a subgroup of the Clifford group transformations and induce a corresponding group representation inside the symplectic matrices. We finally give a simplified derivation of an affine qubit encoding scheme which allows for the removal of qubits due to Boolean symmetries and thus reduces computational effort in quantum computing applications.
Related papers
- Simulating NMR Spectra with a Quantum Computer [49.1574468325115]
This paper provides a formalization of the complete procedure of the simulation of a spin system's NMR spectrum.
We also explain how to diagonalize the Hamiltonian matrix with a quantum computer, thus enhancing the overall process's performance.
arXiv Detail & Related papers (2024-10-28T08:43:40Z) - Quantum Algorithms for Realizing Symmetric, Asymmetric, and Antisymmetric Projectors [3.481985817302898]
Knowing the symmetries of a given system or state obeys or disobeys is often useful in quantum computing.
We present a collection of quantum algorithms that realize projections onto the symmetric subspace.
We show how projectors can be combined in a systematic way to effectively measure various projections in a single quantum circuit.
arXiv Detail & Related papers (2024-07-24T18:00:07Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
We develop a general framework to linearize the von-Neumann equation rendering it in a suitable form for quantum simulations.
We show that one of these linearizations of the von-Neumann equation corresponds to the standard case in which the state vector becomes the column stacked elements of the density matrix.
A quantum algorithm to simulate the dynamics of the density matrix is proposed.
arXiv Detail & Related papers (2023-06-14T23:08:51Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
We design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset.
We use fully connected neural networks to model the transformations symmetry and the corresponding generators.
Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.
arXiv Detail & Related papers (2023-01-13T16:25:25Z) - Efficient classical algorithms for simulating symmetric quantum systems [4.416367445587541]
We show that classical algorithms can efficiently emulate quantum counterparts given certain classical descriptions of the input.
Specifically, we give classical algorithms that calculate ground states and time-evolved expectation values for permutation-invariantians specified in the symmetrized Pauli basis.
arXiv Detail & Related papers (2022-11-30T13:53:16Z) - Permutation symmetry in large N Matrix Quantum Mechanics and Partition
Algebras [0.0]
We describe the implications of permutation symmetry for the state space and dynamics of quantum mechanical systems of general size $N$.
A symmetry-based mechanism for quantum many body scars discussed in the literature can be realised in these matrix systems with permutation symmetry.
arXiv Detail & Related papers (2022-07-05T16:47:10Z) - Quantum Algorithms for Testing Hamiltonian Symmetry [4.62316736194615]
We show that familiar expressions of Hamiltonian symmetry in quantum mechanics correspond directly with the acceptance of our algorithms.
We execute one of our symmetry-testing algorithms on existing quantum computers for simple examples of both symmetric and asymmetric cases.
arXiv Detail & Related papers (2022-03-18T15:30:50Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Role of symmetry in quantum search via continuous-time quantum walk [0.0]
We discuss how the symmetries of the graphs are related to the existence of such an invariant subspace.
This discussion also suggests that all the symmetries are used up in the invariant subspace and the asymmetric part of the Hamiltonian is very important for the purpose of quantum search.
arXiv Detail & Related papers (2021-06-15T19:55:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.