Quantum Algorithms for Testing Hamiltonian Symmetry
- URL: http://arxiv.org/abs/2203.10017v6
- Date: Tue, 26 Dec 2023 23:21:51 GMT
- Title: Quantum Algorithms for Testing Hamiltonian Symmetry
- Authors: Margarite L. LaBorde and Mark M. Wilde
- Abstract summary: We show that familiar expressions of Hamiltonian symmetry in quantum mechanics correspond directly with the acceptance of our algorithms.
We execute one of our symmetry-testing algorithms on existing quantum computers for simple examples of both symmetric and asymmetric cases.
- Score: 4.62316736194615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Symmetries in a Hamiltonian play an important role in quantum physics because
they correspond directly with conserved quantities of the related system. In
this paper, we propose quantum algorithms capable of testing whether a
Hamiltonian exhibits symmetry with respect to a group. We demonstrate that
familiar expressions of Hamiltonian symmetry in quantum mechanics correspond
directly with the acceptance probabilities of our algorithms. We execute one of
our symmetry-testing algorithms on existing quantum computers for simple
examples of both symmetric and asymmetric cases.
Related papers
- Simulating NMR Spectra with a Quantum Computer [49.1574468325115]
This paper provides a formalization of the complete procedure of the simulation of a spin system's NMR spectrum.
We also explain how to diagonalize the Hamiltonian matrix with a quantum computer, thus enhancing the overall process's performance.
arXiv Detail & Related papers (2024-10-28T08:43:40Z) - Quantum Algorithms for Realizing Symmetric, Asymmetric, and Antisymmetric Projectors [3.481985817302898]
Knowing the symmetries of a given system or state obeys or disobeys is often useful in quantum computing.
We present a collection of quantum algorithms that realize projections onto the symmetric subspace.
We show how projectors can be combined in a systematic way to effectively measure various projections in a single quantum circuit.
arXiv Detail & Related papers (2024-07-24T18:00:07Z) - Revealing symmetries in quantum computing for many-body systems [0.0]
We deduce the symmetry properties of many-body Hamiltonians when they are prepared in Jordan-Wigner form for evaluation on quantum computers.
We prove a general theorem that provides a straightforward method to calculate the transformation of Pauli tensor strings under symmetry operations.
arXiv Detail & Related papers (2024-07-03T18:53:09Z) - Efficient quantum algorithms for testing symmetries of open quantum
systems [17.55887357254701]
In quantum mechanics, it is possible to eliminate degrees of freedom by leveraging symmetry to identify the possible physical transitions.
Previous works have focused on devising quantum algorithms to ascertain symmetries by means of fidelity-based symmetry measures.
We develop alternative symmetry testing quantum algorithms that are efficiently implementable on quantum computers.
arXiv Detail & Related papers (2023-09-05T18:05:26Z) - A Menagerie of Symmetry Testing Quantum Algorithms [0.0]
We show how to generate a notion of symmetry from a discrete, finite group and how this generalizes to a continuous group.
We propose quantum algorithms capable of testing whether a Hamiltonian exhibits symmetry with respect to a group.
We prove that the acceptance probability of each algorithm is equal to the maximum symmetric fidelity of the state being tested.
arXiv Detail & Related papers (2023-05-23T22:55:02Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - General quantum algorithms for Hamiltonian simulation with applications
to a non-Abelian lattice gauge theory [44.99833362998488]
We introduce quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple quantum numbers.
The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions.
The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories.
arXiv Detail & Related papers (2022-12-28T18:56:25Z) - Symmetric Pruning in Quantum Neural Networks [111.438286016951]
Quantum neural networks (QNNs) exert the power of modern quantum machines.
QNNs with handcraft symmetric ansatzes generally experience better trainability than those with asymmetric ansatzes.
We propose the effective quantum neural tangent kernel (EQNTK) to quantify the convergence of QNNs towards the global optima.
arXiv Detail & Related papers (2022-08-30T08:17:55Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Testing symmetry on quantum computers [3.481985817302898]
In quantum information and beyond, it is known that quantum states possessing symmetry are not useful for certain information-processing tasks.
This paper details several quantum algorithms that test the symmetry of quantum states and channels.
arXiv Detail & Related papers (2021-05-26T18:01:54Z) - Stoquasticity in circuit QED [78.980148137396]
We show that scalable sign-problem free path integral Monte Carlo simulations can typically be performed for such systems.
We corroborate the recent finding that an effective, non-stoquastic qubit Hamiltonian can emerge in a system of capacitively coupled flux qubits.
arXiv Detail & Related papers (2020-11-02T16:41:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.