Security Approaches for Data Provenance in the Internet of Things: A Systematic Literature Review
- URL: http://arxiv.org/abs/2407.03466v2
- Date: Sat, 02 Nov 2024 11:23:04 GMT
- Title: Security Approaches for Data Provenance in the Internet of Things: A Systematic Literature Review
- Authors: Omair Faraj, David Megias, Joaquin Garcia-Alfaro,
- Abstract summary: Internet of Things systems are vulnerable to security attacks.
Data provenance offers a way to record the origin, history, and handling of data to address these vulnerabilities.
- Score: 0.0
- License:
- Abstract: The Internet of Things (IoT) relies on resource-constrained devices deployed in unprotected environments. Given their constrained nature, IoT systems are vulnerable to security attacks. Data provenance, which tracks the origin and flow of data, provides a potential solution to guarantee data security, including trustworthiness, confidentiality, integrity, and availability in IoT systems. Different types of risks may be faced during data transmission in single-hop and multi-hop scenarios, particularly due to the interconnectivity of IoT systems, which introduces security and privacy concerns. Attackers can inject malicious data or manipulate data without notice, compromising data integrity and trustworthiness. Data provenance offers a way to record the origin, history, and handling of data to address these vulnerabilities. A systematic literature review of data provenance in IoT is presented, exploring existing techniques, practical implementations, security requirements, and performance metrics. Respective contributions and shortcomings are compared. A taxonomy related to the development of data provenance in IoT is proposed. Open issues are identified, and future research directions are presented, providing useful insights for the evolution of data provenance research in the context of the IoT.
Related papers
- Generative AI for Secure and Privacy-Preserving Mobile Crowdsensing [74.58071278710896]
generative AI has attracted much attention from both academic and industrial fields.
Secure and privacy-preserving mobile crowdsensing (SPPMCS) has been widely applied in data collection/ acquirement.
arXiv Detail & Related papers (2024-05-17T04:00:58Z) - Differentiated Security Architecture for Secure and Efficient Infotainment Data Communication in IoV Networks [55.340315838742015]
Negligence on the security of infotainment data communication in IoV networks can unintentionally open an easy access point for social engineering attacks.
In particular, we first classify data communication in the IoV network, examine the security focus of each data communication, and then develop a differentiated security architecture to provide security protection on a file-to-file basis.
arXiv Detail & Related papers (2024-03-29T12:01:31Z) - Enhancing IoT Security Against DDoS Attacks through Federated Learning [0.0]
Internet of Things (IoT) has ushered in transformative connectivity between physical devices and the digital realm.
Traditional DDoS mitigation approaches are ill-equipped to handle the intricacies of IoT ecosystems.
This paper introduces an innovative strategy to bolster the security of IoT networks against DDoS attacks by harnessing the power of Federated Learning.
arXiv Detail & Related papers (2024-03-16T16:45:28Z) - Building Trust in Data for IoT Systems [0.0]
This paper proposes a novel solution with the proper protocols to provide Trust in Data.
IOTA Distributed Ledger Technology and the Trusted Platform Module are used.
The paper concludes with a Proof-of-Concept implementation and an experimental evaluation to confirm its feasibility and to assess the achievable performance.
arXiv Detail & Related papers (2024-03-04T17:14:08Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - A Blockchain-based Model for Securing Data Pipeline in a Heterogeneous
Information System [0.0]
This article presents a blockchain-based model for securing data pipelines in a heterogeneous information system.
The model is designed to ensure data integrity, confidentiality, and authenticity in a decentralized manner.
arXiv Detail & Related papers (2024-01-17T14:40:09Z) - Navigating the IoT landscape: Unraveling forensics, security issues, applications, research challenges, and future [6.422895251217666]
This paper reviews forensic and security issues associated with IoT in different fields.
Most IoT devices are vulnerable to attacks due to a lack of standardized security measures.
To fulfil the security-conscious needs of consumers, IoT can be used to develop a smart home system.
arXiv Detail & Related papers (2023-09-06T04:41:48Z) - HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a
Collaborative IoT Intrusion Detection [0.0]
We propose a hierarchical blockchain-based federated learning framework to enable secure and privacy-preserved collaborative IoT intrusion detection.
The proposed ML-based intrusion detection framework follows a hierarchical federated learning architecture to ensure the privacy of the learning process and organisational data.
The outcome is a securely designed ML-based intrusion detection system capable of detecting a wide range of malicious activities while preserving data privacy.
arXiv Detail & Related papers (2022-04-08T19:06:16Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
This work systematically categorizes and discusses a wide range of dataset vulnerabilities and exploits.
In addition to describing various poisoning and backdoor threat models and the relationships among them, we develop their unified taxonomy.
arXiv Detail & Related papers (2020-12-18T22:38:47Z) - Trustworthy AI [75.99046162669997]
Brittleness to minor adversarial changes in the input data, ability to explain the decisions, address the bias in their training data, are some of the most prominent limitations.
We propose the tutorial on Trustworthy AI to address six critical issues in enhancing user and public trust in AI systems.
arXiv Detail & Related papers (2020-11-02T20:04:18Z) - Data Mining with Big Data in Intrusion Detection Systems: A Systematic
Literature Review [68.15472610671748]
Cloud computing has become a powerful and indispensable technology for complex, high performance and scalable computation.
The rapid rate and volume of data creation has begun to pose significant challenges for data management and security.
The design and deployment of intrusion detection systems (IDS) in the big data setting has, therefore, become a topic of importance.
arXiv Detail & Related papers (2020-05-23T20:57:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.