論文の概要: Celeb-FBI: A Benchmark Dataset on Human Full Body Images and Age, Gender, Height and Weight Estimation using Deep Learning Approach
- arxiv url: http://arxiv.org/abs/2407.03486v1
- Date: Wed, 3 Jul 2024 20:16:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 19:51:01.615630
- Title: Celeb-FBI: A Benchmark Dataset on Human Full Body Images and Age, Gender, Height and Weight Estimation using Deep Learning Approach
- Title(参考訳): Celeb-FBI:ディープラーニングを用いた人体画像と年齢, 性別, 身長, 体重推定のベンチマークデータセット
- Authors: Pronay Debnath, Usafa Akther Rifa, Busra Kamal Rafa, Ali Haider Talukder Akib, Md. Aminur Rahman,
- Abstract要約: 「Celeb-FBI」データセットには、身長、年齢、体重、性別の詳細な情報とともに、7,211人の個人像が含まれている。
我々はCNN,50層ResNet,16層VGGという3つの深層学習手法を用いて,人間のフルボディ画像から身長,体重,年齢,性別を推定する。
結果から、ResNet-50の精度は79.18%、性別は95.43%、身長は85.60%、体重は81.91%であった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The scarcity of comprehensive datasets in surveillance, identification, image retrieval systems, and healthcare poses a significant challenge for researchers in exploring new methodologies and advancing knowledge in these respective fields. Furthermore, the need for full-body image datasets with detailed attributes like height, weight, age, and gender is particularly significant in areas such as fashion industry analytics, ergonomic design assessment, virtual reality avatar creation, and sports performance analysis. To address this gap, we have created the 'Celeb-FBI' dataset which contains 7,211 full-body images of individuals accompanied by detailed information on their height, age, weight, and gender. Following the dataset creation, we proceed with the preprocessing stages, including image cleaning, scaling, and the application of Synthetic Minority Oversampling Technique (SMOTE). Subsequently, utilizing this prepared dataset, we employed three deep learning approaches: Convolutional Neural Network (CNN), 50-layer ResNet, and 16-layer VGG, which are used for estimating height, weight, age, and gender from human full-body images. From the results obtained, ResNet-50 performed best for the system with an accuracy rate of 79.18% for age, 95.43% for gender, 85.60% for height and 81.91% for weight.
- Abstract(参考訳): 監視、識別、画像検索システム、医療における包括的データセットの不足は、研究者が新しい方法論を探求し、これらの分野における知識を進歩させる上で重要な課題となっている。
さらに、身長、体重、年齢、性別といった詳細な属性を持つフルボディの画像データセットの必要性は、ファッション業界分析、エルゴノミクスデザインアセスメント、バーチャルリアリティーアバターの作成、スポーツパフォーマンス分析といった分野において特に重要である。
このギャップに対処するため、私たちは、身長、年齢、体重、性別に関する詳細な情報とともに、7,211人の個人のフルボディイメージを含む「Celeb-FBI」データセットを作成しました。
データセットの作成に続いて、画像のクリーニング、スケーリング、およびSMOTE(Synthetic Minority Oversampling Technique)の適用など、事前処理の段階に進む。
その後、このデータセットを用いて、人間のフルボディ画像から身長、体重、年齢、性別を推定するために使用される、畳み込みニューラルネットワーク(CNN)、50層ResNet、16層VGの3つのディープラーニングアプローチを採用した。
結果から、ResNet-50の精度は79.18%、性別は95.43%、身長は85.60%、体重は81.91%であった。
関連論文リスト
- SDFD: Building a Versatile Synthetic Face Image Dataset with Diverse Attributes [14.966767182001755]
顔の多様性の幅広いスペクトルをキャプチャする合成顔画像データセットを生成する手法を提案する。
具体的には、我々のアプローチは人口統計学とバイオメトリックスを統合するだけでなく、メイクアップ、ヘアスタイル、アクセサリーといった非永続的な特徴も統合しています。
これらのプロンプトは、高品質なリアル画像の包括的なデータセットを生成する際に、最先端のテキスト・ツー・イメージモデルを導く。
論文 参考訳(メタデータ) (2024-04-26T08:51:31Z) - Data Augmentation in Human-Centric Vision [54.97327269866757]
本研究では,人間中心型視覚タスクにおけるデータ拡張手法の包括的分析を行う。
それは、人物のReID、人間のパーシング、人間のポーズ推定、歩行者検出など、幅広い研究領域に展開している。
我々の研究は、データ拡張手法をデータ生成とデータ摂動の2つの主なタイプに分類する。
論文 参考訳(メタデータ) (2024-03-13T16:05:18Z) - Whole-body Detection, Recognition and Identification at Altitude and
Range [57.445372305202405]
多様なデータセットに基づいて評価したエンドツーエンドシステムを提案する。
我々のアプローチでは、一般的な画像データセットで検出器を事前トレーニングし、BRIARの複雑なビデオや画像でそれを微調整する。
屋内・屋外・航空シナリオにおける様々な範囲や角度の異なる条件下で徹底的な評価を行う。
論文 参考訳(メタデータ) (2023-11-09T20:20:23Z) - Self-Supervised Masked Digital Elevation Models Encoding for
Low-Resource Downstream Tasks [0.6374763930914523]
GeoAIは、何十年にもわたって収集されてきたデータのために、自己管理の方法論を活用することができる。
提案されたアーキテクチャは、ImageNetで事前トレーニングされたMasked Autoencoderである。
論文 参考訳(メタデータ) (2023-09-06T21:20:10Z) - CongNaMul: A Dataset for Advanced Image Processing of Soybean Sprouts [0.26786930391553554]
CongNaMulデータセットは、画像分類、セマンティックセグメンテーション、分解、長さと重量の測定などのタスクを容易にするためにキュレートされる。
分類タスクは、ダイズ発芽の質を決定する4つのクラスを提供する。
このデータセットは、大豆の発芽画像の高度な分析において、幅広い研究や応用のための貴重な資源として期待されている。
論文 参考訳(メタデータ) (2023-08-30T01:14:32Z) - One-Shot Learning for Periocular Recognition: Exploring the Effect of
Domain Adaptation and Data Bias on Deep Representations [59.17685450892182]
広範に使用されているCNNモデルにおける深部表現の挙動をワンショット近視認識のための極端データ不足下で検討する。
我々は、バイオメトリックデータセットで訓練されたネットワークを数百万の画像で活用し、最先端の結果を改善した。
SIFTのような従来のアルゴリズムは、限られたデータでCNNより優れている。
論文 参考訳(メタデータ) (2023-07-11T09:10:16Z) - Learning Customized Visual Models with Retrieval-Augmented Knowledge [104.05456849611895]
我々は、ターゲットドメイン用にカスタマイズされたビジュアルモデルを構築するための、関連するWeb知識を取得するためのフレームワークであるREACTを提案する。
我々は、Webスケールデータベースから最も関連性の高い画像テキストペアを外部知識として検索し、元の重みをすべて凍結しながら、新しいモジュール化されたブロックをトレーニングするだけで、モデルをカスタマイズすることを提案する。
REACTの有効性は、ゼロ、少数、フルショット設定を含む分類、検索、検出、セグメンテーションタスクに関する広範な実験を通じて実証される。
論文 参考訳(メタデータ) (2023-01-17T18:59:06Z) - StyleGAN-Human: A Data-Centric Odyssey of Human Generation [96.7080874757475]
この研究は、データ中心の観点から、"データエンジニアリング"における複数の重要な側面を調査します。
さまざまなポーズやテクスチャを抽出した230万以上のサンプルで、大規模な人間の画像データセットを収集し、注釈付けします。
本稿では,データサイズ,データ分布,データアライメントといった,スタイルGANに基づく人為的生成のためのデータ工学における3つの重要な要素について精査する。
論文 参考訳(メタデータ) (2022-04-25T17:55:08Z) - Applying Artificial Intelligence for Age Estimation in Digital Forensic
Investigations [0.8122270502556371]
調査員は画像を見て、性発達段階やその他の人間の特徴を解釈することで、被害者の年齢を決定する必要があることが多い。
本稿では、既存の顔画像データセットを評価し、類似のデジタル法医学研究貢献のニーズに合わせて、新しいデータセットを提案する。
新しいデータセットは、IMDB-WIKIデータセットで事前トレーニングされたDeep Expectation (DEX)アルゴリズムでテストされる。
論文 参考訳(メタデータ) (2022-01-09T16:25:37Z) - Deep learning for identification and face, gender, expression
recognition under constraints [1.2647816797166165]
深層畳み込みニューラルネットワーク(Deep Convolutional Neural Network, CNN)は、ベール付き顔画像から特徴を抽出するために用いられる。
本研究の目的は, 深層学習に基づく自動計算機システムを用いて, 人物だけでなく, 性別, 年齢, 表情の認識や, 笑顔などの表情の認識を行う能力をテストすることである。
論文 参考訳(メタデータ) (2021-11-02T22:45:09Z) - Deep Low-Shot Learning for Biological Image Classification and
Visualization from Limited Training Samples [52.549928980694695]
In situ hybridization (ISH) gene expression pattern image from the same developmental stage。
正確な段階のトレーニングデータをラベル付けするのは、生物学者にとっても非常に時間がかかる。
限られた訓練画像を用いてISH画像を正確に分類する2段階の低ショット学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T06:06:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。