Helicity is a topological invariant of massless particles: C=-2h
- URL: http://arxiv.org/abs/2407.03494v1
- Date: Wed, 3 Jul 2024 20:48:18 GMT
- Title: Helicity is a topological invariant of massless particles: C=-2h
- Authors: Eric Palmerduca, Hong Qin,
- Abstract summary: We show that a subtler relation exists between the topological and geometry of massless particles.
We generate all massless bundle representations via an abelian group structure of massless particles.
- Score: 18.79946237767752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is an elementary but indispensable relationship between the topology and geometry of massive particles. The geometric spin $s$ is related to the topological dimension of the internal space $V$ by $\dim V = 2s + 1$. This breaks down for massless particles, which are characterized by their helicity $h$, but all have 1D internal spaces. We show that a subtler relation exists between the topological and geometry of massless particles. Wave functions of massless particles are sections of nontrivial line bundles over the lightcone whose topology are completely characterized by their first Chern number $C$. We prove that in general $C = -2h$. In doing so, we also exhibit a method of generating all massless bundle representations via an abelian group structure of massless particles.
Related papers
- Small Circle Expansion for Adjoint QCD$_2$ with Periodic Boundary Conditions [0.0]
Supersymmetry is found at the adjoint mass-squared $g2 hvee/ (2pi)$, where $hvee$ is the dual Coxeter number of $G$.
We generalize our results to other gauge groupsG$, for which supersymmetry is found at the adjoint mass-squared $g2 hvee/ (2pi)$, where $hvee$ is the dual Coxeter number of $G$.
arXiv Detail & Related papers (2024-06-24T19:07:42Z) - Klein-Gordon oscillators and Bergman spaces [55.2480439325792]
We consider classical and quantum dynamics of relativistic oscillator in Minkowski space $mathbbR3,1$.
The general solution of this model is given by functions from the weighted Bergman space of square-integrable holomorphic (for particles) and antiholomorphic functions on the K"ahler-Einstein manifold $Z_6$.
arXiv Detail & Related papers (2024-05-23T09:20:56Z) - Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - Vacuum Force and Confinement [65.268245109828]
We show that confinement of quarks and gluons can be explained by their interaction with the vacuum Abelian gauge field $A_sfvac$.
arXiv Detail & Related papers (2024-02-09T13:42:34Z) - Poisson Geometric Formulation of Quantum Mechanics [0.6906005491572401]
We study the geometrical formulation of quantum mechanics for finite dimensional mixed and pure states.
We show that quantum mechanics can be understood in the language of classical mechanics.
arXiv Detail & Related papers (2023-12-09T17:05:56Z) - Quantum connection, charges and virtual particles [65.268245109828]
A quantum bundle $L_hbar$ is endowed with a connection $A_hbar$ and its sections are standard wave functions $psi$ obeying the Schr"odinger equation.
We will lift the bundles $L_Cpm$ and connection $A_hbar$ on them to the relativistic phase space $T*R3,1$ and couple them to the Dirac spinor bundle describing both particles and antiparticles.
arXiv Detail & Related papers (2023-10-10T10:27:09Z) - Photon topology [22.20907440445493]
We show that there are no photons with $boldsymbolk=0$, creating a hole in momentum space.
While the set of all photons forms a trivial vector bundle $gamma$ over this momentum space, the $R$- and $L$-photons form topologically nontrivial subbundles.
We also demonstrate that the spin-Chern number of photons is not a purely topological quantity.
arXiv Detail & Related papers (2023-08-22T03:05:37Z) - A New Look at the $C^{0}$-formulation of the Strong Cosmic Censorship
Conjecture [68.8204255655161]
We argue that for generic black hole parameters as initial conditions for Einstein equations, the metric is $C0$-extendable to a larger Lorentzian manifold.
We prove it violates the "complexity=volume" conjecture for a low-temperature hyperbolic AdS$_d+1$ black hole dual to a CFT living on a ($d-1$)-dimensional hyperboloid $H_d-1$.
arXiv Detail & Related papers (2022-06-17T12:14:33Z) - The curvature-induced gauge potential and the geometric momentum for a
particle on a hypersphere [0.46664938579243576]
We show that the momentum for the particle on the hypersphere is the geometric one including the gauge potential.
We demonstrate that the momentum for the particle on the hypersphere is the geometric one including the gauge potential.
arXiv Detail & Related papers (2021-03-05T00:44:42Z) - The Geometry of Time in Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
We continue the study of nonrelativistic quantum gravity associated with a family of Ricci flow equations.
This topological gravity is of the cohomological type, and it exhibits an $cal N=2$ extended BRST symmetry.
We demonstrate a standard one-step BRST gauge-fixing of a theory whose fields are $g_ij$, $ni$ and $n$, and whose gauge symmetries consist of (i) the topological deformations of $g_ij$, and (ii) the ultralocal nonrelativistic limit of space
arXiv Detail & Related papers (2020-11-12T06:57:10Z) - A degeneracy bound for homogeneous topological order [0.30458514384586394]
We introduce a notion of homogeneous topological order, which is obeyed by most, if not all, known examples of topological order.
We derive a bound on the ground state degeneracy $mathcal D$ for systems with homogeneous topological order.
arXiv Detail & Related papers (2020-09-28T18:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.