論文の概要: Evolutionary Approach to S-box Generation: Optimizing Nonlinear Substitutions in Symmetric Ciphers
- arxiv url: http://arxiv.org/abs/2407.03510v1
- Date: Wed, 3 Jul 2024 21:15:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 19:51:01.590399
- Title: Evolutionary Approach to S-box Generation: Optimizing Nonlinear Substitutions in Symmetric Ciphers
- Title(参考訳): Sボックス生成への進化的アプローチ:対称暗号における非線形置換の最適化
- Authors: Oleksandr Kuznetsov, Nikolay Poluyanenko, Emanuele Frontoni, Marco Arnesano, Oleksii Smirnov,
- Abstract要約: 本研究では,対称鍵暗号における非線形置換箱(Sボックス)生成における遺伝的アルゴリズムの適用について検討した。
本稿では,遺伝的アルゴリズムとWalsh-Hadamard Spectrum (WHS)コスト関数を組み合わせることで,非線形性104。
提案手法は, 平均49,399回, 100%の成功率で, 最もよく知られた手法と同等の性能を実現する。
- 参考スコア(独自算出の注目度): 19.65010496906351
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study explores the application of genetic algorithms in generating highly nonlinear substitution boxes (S-boxes) for symmetric key cryptography. We present a novel implementation that combines a genetic algorithm with the Walsh-Hadamard Spectrum (WHS) cost function to produce 8x8 S-boxes with a nonlinearity of 104. Our approach achieves performance parity with the best-known methods, requiring an average of 49,399 iterations with a 100% success rate. The study demonstrates significant improvements over earlier genetic algorithm implementations in this field, reducing iteration counts by orders of magnitude. By achieving equivalent performance through a different algorithmic approach, our work expands the toolkit available to cryptographers and highlights the potential of genetic methods in cryptographic primitive generation. The adaptability and parallelization potential of genetic algorithms suggest promising avenues for future research in S-box generation, potentially leading to more robust, efficient, and innovative cryptographic systems. Our findings contribute to the ongoing evolution of symmetric key cryptography, offering new perspectives on optimizing critical components of secure communication systems.
- Abstract(参考訳): 本研究では,対称鍵暗号における非線形置換箱(Sボックス)生成における遺伝的アルゴリズムの適用について検討した。
本稿では,遺伝的アルゴリズムとWalsh-Hadamard Spectrum (WHS)コスト関数を組み合わせることで,非線形性104。
提案手法は, 平均49,399回, 100%の成功率で, 最もよく知られた手法と同等の性能を実現する。
この研究は、この分野での初期の遺伝的アルゴリズムの実装よりも顕著な改善を示し、イテレーションの回数を桁違いに減らした。
異なるアルゴリズムアプローチで同等のパフォーマンスを実現することで、我々の研究は、暗号学者に利用可能なツールキットを拡張し、暗号プリミティブ生成における遺伝的手法の可能性を強調します。
遺伝的アルゴリズムの適応性と並列化の可能性は、将来のSボックス生成への道のりを示唆しており、より堅牢で効率的で革新的な暗号システムに繋がる可能性がある。
我々の発見は、セキュアな通信システムの重要なコンポーネントを最適化するための新たな視点を提供する、対称鍵暗号の進化に寄与する。
関連論文リスト
- MeGA: Merging Multiple Independently Trained Neural Networks Based on Genetic Algorithm [0.0]
本稿では, 遺伝的アルゴリズムであるMeGAを用いて, 複数の事前学習ニューラルネットワークの重みをマージする新しい手法を提案する。
我々のアプローチは、トーナメントの選択、クロスオーバー、突然変異による遺伝的アルゴリズムを利用して重量の組み合わせを最適化し、より効果的な融合を生み出す。
論文 参考訳(メタデータ) (2024-06-07T03:31:58Z) - Genetic Engineering Algorithm (GEA): An Efficient Metaheuristic
Algorithm for Solving Combinatorial Optimization Problems [1.8434042562191815]
遺伝的アルゴリズム(GA)は最適化問題の解法における効率性で知られている。
本稿では遺伝子工学の概念からインスピレーションを得るため,遺伝子工学アルゴリズム(GEA)と呼ばれる新しいメタヒューリスティックアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-28T13:05:30Z) - GloptiNets: Scalable Non-Convex Optimization with Certificates [61.50835040805378]
本稿では,ハイパーキューブやトーラス上のスムーズな関数を扱う証明書を用いた非キューブ最適化手法を提案する。
スペクトルの減衰に固有の対象関数の正則性を活用することにより、正確な証明を取得し、高度で強力なニューラルネットワークを活用することができる。
論文 参考訳(メタデータ) (2023-06-26T09:42:59Z) - Stochastic Ratios Tracking Algorithm for Large Scale Machine Learning
Problems [0.7614628596146599]
古典的なSGDフレームワークにおける適応的なステップ長選択のための新しいアルゴリズムを提案する。
妥当な条件下では、アルゴリズムは十分に確立された理論的な要件に従ってステップ長を生成する。
このアルゴリズムは,手動チューニングから得られる最良ステップ長に匹敵するステップ長を生成することができることを示す。
論文 参考訳(メタデータ) (2023-05-17T06:22:11Z) - Genetically Modified Wolf Optimization with Stochastic Gradient Descent
for Optimising Deep Neural Networks [0.0]
本研究の目的は、人口ベースメタヒューリスティックアルゴリズムを用いて、ニューラルネットワーク(NN)重み付けを最適化するための代替アプローチを分析することである。
Grey Wolf (GWO) と Genetic Modified Algorithms (GA) のハイブリッドをグラディエント・Descent (SGD) と組み合わせて検討した。
このアルゴリズムは、高次元性の問題にも対処しながら、エクスプロイトと探索の組み合わせを可能にする。
論文 参考訳(メタデータ) (2023-01-21T13:22:09Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Distributed Evolution Strategies for Black-box Stochastic Optimization [42.90600124972943]
この研究は、分散ブラックボックス最適化への進化的アプローチに関するものである。
各作業者は、アルゴリズムによる問題の近似を個別に解くことができる。
問題のロバスト性を大幅に改善する2つの代替シミュレーション手法を提案する。
論文 参考訳(メタデータ) (2022-04-09T11:18:41Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - AdaLead: A simple and robust adaptive greedy search algorithm for
sequence design [55.41644538483948]
我々は、容易で、拡張性があり、堅牢な進化的欲求アルゴリズム(AdaLead)を開発した。
AdaLeadは、様々な生物学的に動機づけられたシーケンスデザインの課題において、アートアプローチのより複雑な状態を克服する、驚くほど強力なベンチマークである。
論文 参考訳(メタデータ) (2020-10-05T16:40:38Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
我々は、(離散時間)リアプノフ安定性理論が、必ずしも勾配ベースではない最適化アルゴリズムの分析(および潜在的な設計)において、いかに強力なツールとして役立つかを示す。
本稿では,不完全データベイズフレームワークにおけるパラメータ推定を,MAP-EM (maximum a reari expectation-maximization) と呼ばれる一般的な最適化アルゴリズムを用いて行うことに着目したML問題について述べる。
高速収束(線形あるいは二次的)が達成され,S&Cアプローチを使わずに発表することが困難であった可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-23T01:34:18Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。