A multicategory jet image classification framework using deep neural network
- URL: http://arxiv.org/abs/2407.03524v1
- Date: Wed, 3 Jul 2024 22:00:35 GMT
- Title: A multicategory jet image classification framework using deep neural network
- Authors: Jairo Orozco Sandoval, Vidya Manian, Sudhir Malik,
- Abstract summary: Authors focus on jet category separability by particle and jet feature extraction, resulting in a computational efficient interpretable model for jet classification.
This work demonstrates that high dimensional datasets represented in separable latent spaces lead to simpler architectures for jet classification.
- Score: 0.9350546589421261
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Jet point cloud images are high dimensional data structures that needs to be transformed to a separable feature space for machine learning algorithms to distinguish them with simple decision boundaries. In this article, the authors focus on jet category separability by particle and jet feature extraction, resulting in more efficient training of a simple deep neural network, resulting in a computational efficient interpretable model for jet classification. The methodology is tested with three to five categories of jets from the JetNet benchmark jet tagging dataset, resulting in comparable performance to particle flow network. This work demonstrates that high dimensional datasets represented in separable latent spaces lead to simpler architectures for jet classification.
Related papers
- StarNet: Style-Aware 3D Point Cloud Generation [82.30389817015877]
StarNet is able to reconstruct and generate high-fidelity and even 3D point clouds using a mapping network.
Our framework achieves comparable state-of-the-art performance on various metrics in the point cloud reconstruction and generation tasks.
arXiv Detail & Related papers (2023-03-28T08:21:44Z) - PointResNet: Residual Network for 3D Point Cloud Segmentation and
Classification [18.466814193413487]
Point cloud segmentation and classification are some of the primary tasks in 3D computer vision.
In this paper, we propose PointResNet, a residual block-based approach.
Our model directly processes the 3D points, using a deep neural network for the segmentation and classification tasks.
arXiv Detail & Related papers (2022-11-20T17:39:48Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
We set transformers in this work and incorporate them into a hierarchical framework for shape classification and part and scene segmentation.
We also compute efficient and dynamic global cross attentions by leveraging sampling and grouping at each iteration.
The proposed hierarchical model achieves state-of-the-art shape classification in mean accuracy and yields results on par with the previous segmentation methods.
arXiv Detail & Related papers (2022-07-31T21:39:15Z) - Particle Transformer for Jet Tagging [4.604003661048267]
We present JetClass, a new comprehensive dataset for jet tagging.
The dataset consists of 100 M jets, about two orders of magnitude larger than existing public datasets.
We propose a new Transformer-based architecture for jet tagging, called Particle Transformer (ParT)
arXiv Detail & Related papers (2022-02-08T10:36:29Z) - FS-Net: Fast Shape-based Network for Category-Level 6D Object Pose
Estimation with Decoupled Rotation Mechanism [49.89268018642999]
We propose a fast shape-based network (FS-Net) with efficient category-level feature extraction for 6D pose estimation.
The proposed method achieves state-of-the-art performance in both category- and instance-level 6D object pose estimation.
arXiv Detail & Related papers (2021-03-12T03:07:24Z) - Sequence-based Machine Learning Models in Jet Physics [0.0]
Sequence-based modeling broadly refers to algorithms that act on data that is represented as an ordered set of input elements.
In particular, Machine Learning algorithms with sequences as inputs have seen successfull applications to important problems, such as Natural Language Processing (NLP) and speech signal modeling.
We explore the application of Recurrent Neural Networks (RNNs) and other sequence-based neural network architectures to classify jets, regress jet-related quantities and to build a physics-inspired jet representation.
arXiv Detail & Related papers (2021-02-09T16:04:33Z) - Image-Based Jet Analysis [2.5382095320488665]
Image-based jet analysis is built upon the jet image representation of jets that enables a direct connection between high energy physics and computer vision and deep learning.
We review the methods to understand what these models have learned and what is their sensitivity to uncertainties.
Beyond jet classification, several other applications of jet image based techniques, including energy estimation, pileup noise reduction, data generation, and anomaly detection are discussed.
arXiv Detail & Related papers (2020-12-17T16:42:29Z) - Jet tagging in the Lund plane with graph networks [0.0]
LundNet is a novel jet tagging method which relies on graph neural networks and an efficient description of the radiation patterns within a jet.
We show significantly improved performance for top tagging compared to existing state-of-the-art algorithms.
arXiv Detail & Related papers (2020-12-15T19:00:01Z) - Learning Hybrid Representations for Automatic 3D Vessel Centerline
Extraction [57.74609918453932]
Automatic blood vessel extraction from 3D medical images is crucial for vascular disease diagnoses.
Existing methods may suffer from discontinuities of extracted vessels when segmenting such thin tubular structures from 3D images.
We argue that preserving the continuity of extracted vessels requires to take into account the global geometry.
We propose a hybrid representation learning approach to address this challenge.
arXiv Detail & Related papers (2020-12-14T05:22:49Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNs are powerful but it would be computationally costly to directly apply convolutions on point data after voxelizing the entire point clouds to a dense regular 3D grid.
We propose a novel and principled Local Grid Rendering (LGR) operation to render the small neighborhood of a subset of input points into a low-resolution 3D grid independently.
We validate LGR-Net for 3D object detection on the challenging ScanNet and SUN RGB-D datasets.
arXiv Detail & Related papers (2020-07-04T13:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.