Decision-Focused Evaluation of Worst-Case Distribution Shift
- URL: http://arxiv.org/abs/2407.03557v1
- Date: Thu, 4 Jul 2024 01:00:53 GMT
- Title: Decision-Focused Evaluation of Worst-Case Distribution Shift
- Authors: Kevin Ren, Yewon Byun, Bryan Wilder,
- Abstract summary: We introduce a novel framework to identify worst-case distribution shifts in predictive resource allocation settings.
We show that the problem can be reformulated as a submodular optimization problem, enabling efficient approximations of worst-case loss.
Applying our framework to real data, we find empirical evidence that worst-case shifts identified by one metric often significantly diverge from worst-case distributions identified by other metrics.
- Score: 18.98504221245623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distribution shift is a key challenge for predictive models in practice, creating the need to identify potentially harmful shifts in advance of deployment. Existing work typically defines these worst-case shifts as ones that most degrade the individual-level accuracy of the model. However, when models are used to make a downstream population-level decision like the allocation of a scarce resource, individual-level accuracy may be a poor proxy for performance on the task at hand. We introduce a novel framework that employs a hierarchical model structure to identify worst-case distribution shifts in predictive resource allocation settings by capturing shifts both within and across instances of the decision problem. This task is more difficult than in standard distribution shift settings due to combinatorial interactions, where decisions depend on the joint presence of individuals in the allocation task. We show that the problem can be reformulated as a submodular optimization problem, enabling efficient approximations of worst-case loss. Applying our framework to real data, we find empirical evidence that worst-case shifts identified by one metric often significantly diverge from worst-case distributions identified by other metrics.
Related papers
- Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.
We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.
Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - Distributionally Robust Post-hoc Classifiers under Prior Shifts [31.237674771958165]
We investigate the problem of training models that are robust to shifts caused by changes in the distribution of class-priors or group-priors.
We present an extremely lightweight post-hoc approach that performs scaling adjustments to predictions from a pre-trained model.
arXiv Detail & Related papers (2023-09-16T00:54:57Z) - Modeling the Q-Diversity in a Min-max Play Game for Robust Optimization [61.39201891894024]
Group distributionally robust optimization (group DRO) can minimize the worst-case loss over pre-defined groups.
We reformulate the group DRO framework by proposing Q-Diversity.
Characterized by an interactive training mode, Q-Diversity relaxes the group identification from annotation into direct parameterization.
arXiv Detail & Related papers (2023-05-20T07:02:27Z) - Evaluating Robustness and Uncertainty of Graph Models Under Structural
Distributional Shifts [43.40315460712298]
In node-level problems of graph learning, distributional shifts can be especially complex.
We propose a general approach for inducing diverse distributional shifts based on graph structure.
We show that simple models often outperform more sophisticated methods on the considered structural shifts.
arXiv Detail & Related papers (2023-02-27T15:25:21Z) - Evaluating Robustness to Dataset Shift via Parametric Robustness Sets [7.347989843033034]
We give a method for proactively identifying small, plausible shifts in distribution which lead to large differences in model performance.
We apply an approach to classifying gender from images, revealing sensitivity to shifts in non-causal attributes.
arXiv Detail & Related papers (2022-05-31T16:44:18Z) - Beyond Discriminant Patterns: On the Robustness of Decision Rule
Ensembles [22.57678894050416]
Local decision rules are commonly understood to be more explainable, due to the local nature of the patterns involved.
We propose a new method to learn and ensemble local decision rules, that are robust both in the training and deployment environments.
arXiv Detail & Related papers (2021-09-21T20:50:10Z) - Predicting with Confidence on Unseen Distributions [90.68414180153897]
We connect domain adaptation and predictive uncertainty literature to predict model accuracy on challenging unseen distributions.
We find that the difference of confidences (DoC) of a classifier's predictions successfully estimates the classifier's performance change over a variety of shifts.
We specifically investigate the distinction between synthetic and natural distribution shifts and observe that despite its simplicity DoC consistently outperforms other quantifications of distributional difference.
arXiv Detail & Related papers (2021-07-07T15:50:18Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
We define and analyze robust and spurious representations using the information-theoretic concept of minimal sufficient statistics.
We prove that even when there is only bias of the input distribution, models can still pick up spurious features from their training data.
Inspired by our analysis, we demonstrate that group DRO can fail when groups do not directly account for various spurious correlations.
arXiv Detail & Related papers (2021-06-14T05:39:09Z) - Causally-motivated Shortcut Removal Using Auxiliary Labels [63.686580185674195]
Key challenge to learning such risk-invariant predictors is shortcut learning.
We propose a flexible, causally-motivated approach to address this challenge.
We show both theoretically and empirically that this causally-motivated regularization scheme yields robust predictors.
arXiv Detail & Related papers (2021-05-13T16:58:45Z) - Estimating Generalization under Distribution Shifts via Domain-Invariant
Representations [75.74928159249225]
We use a set of domain-invariant predictors as a proxy for the unknown, true target labels.
The error of the resulting risk estimate depends on the target risk of the proxy model.
arXiv Detail & Related papers (2020-07-06T17:21:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.