Estimating Generalization under Distribution Shifts via Domain-Invariant
Representations
- URL: http://arxiv.org/abs/2007.03511v1
- Date: Mon, 6 Jul 2020 17:21:24 GMT
- Title: Estimating Generalization under Distribution Shifts via Domain-Invariant
Representations
- Authors: Ching-Yao Chuang, Antonio Torralba, Stefanie Jegelka
- Abstract summary: We use a set of domain-invariant predictors as a proxy for the unknown, true target labels.
The error of the resulting risk estimate depends on the target risk of the proxy model.
- Score: 75.74928159249225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When machine learning models are deployed on a test distribution different
from the training distribution, they can perform poorly, but overestimate their
performance. In this work, we aim to better estimate a model's performance
under distribution shift, without supervision. To do so, we use a set of
domain-invariant predictors as a proxy for the unknown, true target labels.
Since the error of the resulting risk estimate depends on the target risk of
the proxy model, we study generalization of domain-invariant representations
and show that the complexity of the latent representation has a significant
influence on the target risk. Empirically, our approach (1) enables self-tuning
of domain adaptation models, and (2) accurately estimates the target error of
given models under distribution shift. Other applications include model
selection, deciding early stopping and error detection.
Related papers
- Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.
We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.
Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - Distributionally Robust Post-hoc Classifiers under Prior Shifts [31.237674771958165]
We investigate the problem of training models that are robust to shifts caused by changes in the distribution of class-priors or group-priors.
We present an extremely lightweight post-hoc approach that performs scaling adjustments to predictions from a pre-trained model.
arXiv Detail & Related papers (2023-09-16T00:54:57Z) - Robustness, Evaluation and Adaptation of Machine Learning Models in the
Wild [4.304803366354879]
We study causes of impaired robustness to domain shifts and present algorithms for training domain robust models.
A key source of model brittleness is due to domain overfitting, which our new training algorithms suppress and instead encourage domain-general hypotheses.
arXiv Detail & Related papers (2023-03-05T21:41:16Z) - Modeling Uncertain Feature Representation for Domain Generalization [49.129544670700525]
We show that our method consistently improves the network generalization ability on multiple vision tasks.
Our methods are simple yet effective and can be readily integrated into networks without additional trainable parameters or loss constraints.
arXiv Detail & Related papers (2023-01-16T14:25:02Z) - Predicting with Confidence on Unseen Distributions [90.68414180153897]
We connect domain adaptation and predictive uncertainty literature to predict model accuracy on challenging unseen distributions.
We find that the difference of confidences (DoC) of a classifier's predictions successfully estimates the classifier's performance change over a variety of shifts.
We specifically investigate the distinction between synthetic and natural distribution shifts and observe that despite its simplicity DoC consistently outperforms other quantifications of distributional difference.
arXiv Detail & Related papers (2021-07-07T15:50:18Z) - Gradual Domain Adaptation in the Wild:When Intermediate Distributions
are Absent [32.906658998929394]
We focus on the problem of domain adaptation when the goal is shifting the model towards the target distribution.
We propose GIFT, a method that creates virtual samples from intermediate distributions by interpolating representations of examples from source and target domains.
arXiv Detail & Related papers (2021-06-10T22:47:06Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Calibrated Prediction with Covariate Shift via Unsupervised Domain
Adaptation [25.97333838935589]
Uncertainty estimates are an important tool for helping autonomous agents or human decision makers understand and leverage predictive models.
Existing algorithms can overestimate certainty, possibly yielding a false sense of confidence in the predictive model.
arXiv Detail & Related papers (2020-02-29T20:31:04Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
We show that a posterior approximation distinct from the variational distribution should be used for making decisions.
Motivated by these theoretical results, we propose learning several approximate proposals for the best model.
In addition to toy examples, we present a full-fledged case study of single-cell RNA sequencing.
arXiv Detail & Related papers (2020-02-17T19:23:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.