FDS: Feedback-guided Domain Synthesis with Multi-Source Conditional Diffusion Models for Domain Generalization
- URL: http://arxiv.org/abs/2407.03588v2
- Date: Wed, 24 Jul 2024 16:26:41 GMT
- Title: FDS: Feedback-guided Domain Synthesis with Multi-Source Conditional Diffusion Models for Domain Generalization
- Authors: Mehrdad Noori, Milad Cheraghalikhani, Ali Bahri, Gustavo Adolfo Vargas Hakim, David Osowiechi, Moslem Yazdanpanah, Ismail Ben Ayed, Christian Desrosiers,
- Abstract summary: Domain Generalization techniques aim to enhance model robustness by simulating novel data distributions during training.
We propose FDS, Feedback-guided Domain Synthesis, a novel strategy that employs diffusion models to synthesize novel, pseudo-domains.
Our evaluations demonstrate that this methodology sets new benchmarks in domain generalization performance across a range of challenging datasets.
- Score: 19.0284321951354
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Domain Generalization techniques aim to enhance model robustness by simulating novel data distributions during training, typically through various augmentation or stylization strategies. However, these methods frequently suffer from limited control over the diversity of generated images and lack assurance that these images span distinct distributions. To address these challenges, we propose FDS, Feedback-guided Domain Synthesis, a novel strategy that employs diffusion models to synthesize novel, pseudo-domains by training a single model on all source domains and performing domain mixing based on learned features. By incorporating images that pose classification challenges to models trained on original samples, alongside the original dataset, we ensure the generation of a training set that spans a broad distribution spectrum. Our comprehensive evaluations demonstrate that this methodology sets new benchmarks in domain generalization performance across a range of challenging datasets, effectively managing diverse types of domain shifts. The implementation is available at: \url{https://github.com/Mehrdad-Noori/FDS.git}.
Related papers
- Boundless Across Domains: A New Paradigm of Adaptive Feature and Cross-Attention for Domain Generalization in Medical Image Segmentation [1.93061220186624]
Domain-invariant representation learning is a powerful method for domain generalization.
Previous approaches face challenges such as high computational demands, training instability, and limited effectiveness with high-dimensional data.
We propose an Adaptive Feature Blending (AFB) method that generates out-of-distribution samples while exploring the in-distribution space.
arXiv Detail & Related papers (2024-11-22T12:06:24Z) - Spectral Adversarial MixUp for Few-Shot Unsupervised Domain Adaptation [72.70876977882882]
Domain shift is a common problem in clinical applications, where the training images (source domain) and the test images (target domain) are under different distributions.
We propose a novel method for Few-Shot Unsupervised Domain Adaptation (FSUDA), where only a limited number of unlabeled target domain samples are available for training.
arXiv Detail & Related papers (2023-09-03T16:02:01Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Cross Contrasting Feature Perturbation for Domain Generalization [11.863319505696184]
Domain generalization aims to learn a robust model from source domains that generalize well on unseen target domains.
Recent studies focus on generating novel domain samples or features to diversify distributions complementary to source domains.
We propose an online one-stage Cross Contrasting Feature Perturbation framework to simulate domain shift.
arXiv Detail & Related papers (2023-07-24T03:27:41Z) - Federated and Generalized Person Re-identification through Domain and
Feature Hallucinating [88.77196261300699]
We study the problem of federated domain generalization (FedDG) for person re-identification (re-ID)
We propose a novel method, called "Domain and Feature Hallucinating (DFH)", to produce diverse features for learning generalized local and global models.
Our method achieves the state-of-the-art performance for FedDG on four large-scale re-ID benchmarks.
arXiv Detail & Related papers (2022-03-05T09:15:13Z) - A Novel Mix-normalization Method for Generalizable Multi-source Person
Re-identification [49.548815417844786]
Person re-identification (Re-ID) has achieved great success in the supervised scenario.
It is difficult to directly transfer the supervised model to arbitrary unseen domains due to the model overfitting to the seen source domains.
We propose MixNorm, which consists of domain-aware mix-normalization (DMN) and domain-ware center regularization (DCR)
arXiv Detail & Related papers (2022-01-24T18:09:38Z) - Learning to Diversify for Single Domain Generalization [46.35670520201863]
Domain generalization (DG) aims to generalize a model trained on multiple source (i.e., training) domains to a distributionally different target (i.e., test) domain.
This paper considers a more realistic yet challenging scenario, namely Single Domain Generalization (Single-DG), where only one source domain is available for training.
In this scenario, the limited diversity may jeopardize the model generalization on unseen target domains.
We propose a style-complement module to enhance the generalization power of the model by synthesizing images from diverse distributions that are complementary to the source ones.
arXiv Detail & Related papers (2021-08-26T12:04:32Z) - Domain Generalization via Gradient Surgery [5.38147998080533]
In real-life applications, machine learning models often face scenarios where there is a change in data distribution between training and test domains.
In this work, we characterize the conflicting gradients emerging in domain shift scenarios and devise novel gradient agreement strategies.
arXiv Detail & Related papers (2021-08-03T16:49:25Z) - Graphical Modeling for Multi-Source Domain Adaptation [56.05348879528149]
Multi-Source Domain Adaptation (MSDA) focuses on transferring the knowledge from multiple source domains to the target domain.
We propose two types of graphical models,i.e. Conditional Random Field for MSDA (CRF-MSDA) and Markov Random Field for MSDA (MRF-MSDA)
We evaluate these two models on four standard benchmark data sets of MSDA with distinct domain shift and data complexity.
arXiv Detail & Related papers (2021-04-27T09:04:22Z) - Model-Based Domain Generalization [96.84818110323518]
We propose a novel approach for the domain generalization problem called Model-Based Domain Generalization.
Our algorithms beat the current state-of-the-art methods on the very-recently-proposed WILDS benchmark by up to 20 percentage points.
arXiv Detail & Related papers (2021-02-23T00:59:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.