When can weak latent factors be statistically inferred?
- URL: http://arxiv.org/abs/2407.03616v3
- Date: Mon, 30 Sep 2024 21:26:56 GMT
- Title: When can weak latent factors be statistically inferred?
- Authors: Jianqing Fan, Yuling Yan, Yuheng Zheng,
- Abstract summary: This article establishes a new and comprehensive estimation and inference theory for principal component analysis (PCA)
Our theory is applicable regardless of the relative growth rate between the cross-sectional dimension $N$ and temporal dimension $TT$.
A notable technical innovation is our closed-form first-order approximation of PCA-based estimator, which paves the way for various statistical tests.
- Score: 5.195669033269619
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article establishes a new and comprehensive estimation and inference theory for principal component analysis (PCA) under the weak factor model that allow for cross-sectional dependent idiosyncratic components under the nearly minimal factor strength relative to the noise level or signal-to-noise ratio. Our theory is applicable regardless of the relative growth rate between the cross-sectional dimension $N$ and temporal dimension $T$. This more realistic assumption and noticeable result require completely new technical device, as the commonly-used leave-one-out trick is no longer applicable to the case with cross-sectional dependence. Another notable advancement of our theory is on PCA inference $ - $ for example, under the regime where $N\asymp T$, we show that the asymptotic normality for the PCA-based estimator holds as long as the signal-to-noise ratio (SNR) grows faster than a polynomial rate of $\log N$. This finding significantly surpasses prior work that required a polynomial rate of $N$. Our theory is entirely non-asymptotic, offering finite-sample characterizations for both the estimation error and the uncertainty level of statistical inference. A notable technical innovation is our closed-form first-order approximation of PCA-based estimator, which paves the way for various statistical tests. Furthermore, we apply our theories to design easy-to-implement statistics for validating whether given factors fall in the linear spans of unknown latent factors, testing structural breaks in the factor loadings for an individual unit, checking whether two units have the same risk exposures, and constructing confidence intervals for systematic risks. Our empirical studies uncover insightful correlations between our test results and economic cycles.
Related papers
- Sparse Asymptotic PCA: Identifying Sparse Latent Factors Across Time Horizon [0.0]
This paper introduces a novel sparse latent factor modeling framework using sparse Principal Component Analysis ( APCA)
Unlike existing methods based on sparse PCA, our approach posits sparsity in the factor processes while allowing non-sparse loadings.
We develop a data-driven approach to identify the sparsity of risk factors over the time horizon using a novel cross-sectional cross-validation method.
arXiv Detail & Related papers (2024-07-13T01:32:37Z) - Invariant Causal Prediction with Local Models [52.161513027831646]
We consider the task of identifying the causal parents of a target variable among a set of candidates from observational data.
We introduce a practical method called L-ICP ($textbfL$ocalized $textbfI$nvariant $textbfCa$usal $textbfP$rediction), which is based on a hypothesis test for parent identification using a ratio of minimum and maximum statistics.
arXiv Detail & Related papers (2024-01-10T15:34:42Z) - Sparse PCA with Oracle Property [115.72363972222622]
We propose a family of estimators based on the semidefinite relaxation of sparse PCA with novel regularizations.
We prove that, another estimator within the family achieves a sharper statistical rate of convergence than the standard semidefinite relaxation of sparse PCA.
arXiv Detail & Related papers (2023-12-28T02:52:54Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
We develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models.
In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach.
arXiv Detail & Related papers (2023-06-15T16:30:08Z) - A New Central Limit Theorem for the Augmented IPW Estimator: Variance
Inflation, Cross-Fit Covariance and Beyond [0.9172870611255595]
Cross-fit inverse probability weighting (AIPW) with cross-fitting is a popular choice in practice.
We study this cross-fit AIPW estimator under well-specified outcome regression and propensity score models in a high-dimensional regime.
Our work utilizes a novel interplay between three distinct tools--approximate message passing theory, the theory of deterministic equivalents, and the leave-one-out approach.
arXiv Detail & Related papers (2022-05-20T14:17:53Z) - Stability and Risk Bounds of Iterative Hard Thresholding [41.082982732100696]
We introduce a novel sparse generalization theory for IHT under the notion of algorithmic stability.
We show that IHT with sparsity level $k$ enjoys an $mathcaltilde O(n-1/2sqrtlog(n)log(p))$ rate of convergence in sparse excess risk.
Preliminary numerical evidence is provided to confirm our theoretical predictions.
arXiv Detail & Related papers (2022-03-17T16:12:56Z) - Neural Estimation of Statistical Divergences [24.78742908726579]
A modern method for estimating statistical divergences relies on parametrizing an empirical variational form by a neural network (NN)
In particular, there is a fundamental tradeoff between the two sources of error involved: approximation and empirical estimation.
We show that neural estimators with a slightly different NN growth-rate are near minimax rate-optimal, achieving the parametric convergence rate up to logarithmic factors.
arXiv Detail & Related papers (2021-10-07T17:42:44Z) - Understanding the Under-Coverage Bias in Uncertainty Estimation [58.03725169462616]
quantile regression tends to emphunder-cover than the desired coverage level in reality.
We prove that quantile regression suffers from an inherent under-coverage bias.
Our theory reveals that this under-coverage bias stems from a certain high-dimensional parameter estimation error.
arXiv Detail & Related papers (2021-06-10T06:11:55Z) - Uncertainty Principles in Risk-Aware Statistical Estimation [4.721069729610892]
We present a new uncertainty principle for risk-aware statistical estimation.
It effectively quantifying the inherent trade-off between mean squared error ($mse$) and risk.
arXiv Detail & Related papers (2021-04-29T12:06:53Z) - SLOE: A Faster Method for Statistical Inference in High-Dimensional
Logistic Regression [68.66245730450915]
We develop an improved method for debiasing predictions and estimating frequentist uncertainty for practical datasets.
Our main contribution is SLOE, an estimator of the signal strength with convergence guarantees that reduces the computation time of estimation and inference by orders of magnitude.
arXiv Detail & Related papers (2021-03-23T17:48:56Z) - Minimax Off-Policy Evaluation for Multi-Armed Bandits [58.7013651350436]
We study the problem of off-policy evaluation in the multi-armed bandit model with bounded rewards.
We develop minimax rate-optimal procedures under three settings.
arXiv Detail & Related papers (2021-01-19T18:55:29Z) - Robust Linear Regression: Optimal Rates in Polynomial Time [11.646151402884215]
We obtain robust and computationally efficient estimators for learning several linear models.
We identify an analytic condition that serves as a relaxation of independence of random variables.
Our central technical contribution is to algorithmically exploit independence of random variables in the "sum-of-squares" framework.
arXiv Detail & Related papers (2020-06-29T17:22:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.