Sparse Asymptotic PCA: Identifying Sparse Latent Factors Across Time Horizon
- URL: http://arxiv.org/abs/2407.09738v2
- Date: Tue, 21 Jan 2025 12:18:29 GMT
- Title: Sparse Asymptotic PCA: Identifying Sparse Latent Factors Across Time Horizon
- Authors: Zhaoxing Gao,
- Abstract summary: This paper introduces a novel sparse latent factor modeling framework using sparse Principal Component Analysis ( APCA)<n>Unlike existing methods based on sparse PCA, our approach posits sparsity in the factor processes while allowing non-sparse loadings.<n>We develop a data-driven approach to identify the sparsity of risk factors over the time horizon using a novel cross-sectional cross-validation method.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a novel sparse latent factor modeling framework using sparse asymptotic Principal Component Analysis (APCA) to analyze the co-movements of high-dimensional panel data over time. Unlike existing methods based on sparse PCA, which assume sparsity in the loading matrices, our approach posits sparsity in the factor processes while allowing non-sparse loadings. This is motivated by the fact that financial returns typically exhibit universal and non-sparse exposure to market factors. Unlike the commonly used $\ell_1$-relaxation in sparse PCA, the proposed sparse APCA employs a truncated power method to estimate the leading sparse factor and a sequential deflation method for multi-factor cases under $\ell_0$-constraints. Furthermore, we develop a data-driven approach to identify the sparsity of risk factors over the time horizon using a novel cross-sectional cross-validation method. We establish the consistency of our estimators under mild conditions as both the dimension $N$ and the sample size $T$ grow. Monte Carlo simulations demonstrate that the proposed method performs well in finite samples. Empirically, we apply our method to daily S&P 500 stock returns (2004--2016) and identify nine risk factors influencing the stock market.
Related papers
- Achieving $\widetilde{\mathcal{O}}(\sqrt{T})$ Regret in Average-Reward POMDPs with Known Observation Models [56.92178753201331]
We tackle average-reward infinite-horizon POMDPs with an unknown transition model.
We present a novel and simple estimator that overcomes this barrier.
arXiv Detail & Related papers (2025-01-30T22:29:41Z) - When can weak latent factors be statistically inferred? [5.195669033269619]
This article establishes a new and comprehensive estimation and inference theory for principal component analysis (PCA)
Our theory is applicable regardless of the relative growth rate between the cross-sectional dimension $N$ and temporal dimension $TT$.
A notable technical innovation is our closed-form first-order approximation of PCA-based estimator, which paves the way for various statistical tests.
arXiv Detail & Related papers (2024-07-04T03:59:52Z) - Near-Optimal Learning and Planning in Separated Latent MDPs [70.88315649628251]
We study computational and statistical aspects of learning Latent Markov Decision Processes (LMDPs)
In this model, the learner interacts with an MDP drawn at the beginning of each epoch from an unknown mixture of MDPs.
arXiv Detail & Related papers (2024-06-12T06:41:47Z) - A Finite-Sample Analysis of an Actor-Critic Algorithm for Mean-Variance Optimization in a Discounted MDP [1.0923877073891446]
We analyze a Temporal Difference (TD) learning algorithm with linear function approximation (LFA) for policy evaluation.
We derive finite-sample bounds that hold (i) in the mean-squared sense and (ii) with high probability under tail iterate averaging.
These results establish finite-sample theoretical guarantees for risk-sensitive actor-critic methods in reinforcement learning.
arXiv Detail & Related papers (2024-06-12T05:49:53Z) - Sample-efficient Learning of Infinite-horizon Average-reward MDPs with General Function Approximation [53.17668583030862]
We study infinite-horizon average-reward Markov decision processes (AMDPs) in the context of general function approximation.
We propose a novel algorithmic framework named Local-fitted Optimization with OPtimism (LOOP)
We show that LOOP achieves a sublinear $tildemathcalO(mathrmpoly(d, mathrmsp(V*)) sqrtTbeta )$ regret, where $d$ and $beta$ correspond to AGEC and log-covering number of the hypothesis class respectively
arXiv Detail & Related papers (2024-04-19T06:24:22Z) - On Minimum Trace Factor Analysis -- An Old Song Sung to a New Tune [0.0]
This paper introduces a relaxed version of Minimum Trace Factor Analysis (MTFA), a convex optimization method with roots dating back to the work of Ledermann in 1940.
We provide theoretical guarantees on the accuracy of the resulting low rank subspace and the convergence rate of the proposed algorithm to compute that matrix.
arXiv Detail & Related papers (2024-02-04T12:15:56Z) - Sparse PCA with Oracle Property [115.72363972222622]
We propose a family of estimators based on the semidefinite relaxation of sparse PCA with novel regularizations.
We prove that, another estimator within the family achieves a sharper statistical rate of convergence than the standard semidefinite relaxation of sparse PCA.
arXiv Detail & Related papers (2023-12-28T02:52:54Z) - Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
Federated Learning (FL) typically aggregates client model parameters using a weighting approach determined by sample proportions.
We replace the aforementioned weighting method with a new strategy that considers the generalization bounds of each local model.
arXiv Detail & Related papers (2023-11-10T08:50:28Z) - Empirical Risk Minimization for Losses without Variance [26.30435936379624]
This paper considers an empirical risk problem under heavy-tailed settings, where data does not have finite variance, but only has $p$-th moment with $p in (1,2)$.
Instead of using estimation procedure based on truncated observed data, we choose the minimization by minimizing the risk value.
Those risk values can be robustly estimated via using the remarkable Catoni's method (Catoni, 2012).
arXiv Detail & Related papers (2023-09-07T16:14:00Z) - A Tale of Sampling and Estimation in Discounted Reinforcement Learning [50.43256303670011]
We present a minimax lower bound on the discounted mean estimation problem.
We show that estimating the mean by directly sampling from the discounted kernel of the Markov process brings compelling statistical properties.
arXiv Detail & Related papers (2023-04-11T09:13:17Z) - Distributionally Robust Model-Based Offline Reinforcement Learning with
Near-Optimal Sample Complexity [39.886149789339335]
offline reinforcement learning aims to learn to perform decision making from history data without active exploration.
Due to uncertainties and variabilities of the environment, it is critical to learn a robust policy that performs well even when the deployed environment deviates from the nominal one used to collect the history dataset.
We consider a distributionally robust formulation of offline RL, focusing on robust Markov decision processes with an uncertainty set specified by the Kullback-Leibler divergence in both finite-horizon and infinite-horizon settings.
arXiv Detail & Related papers (2022-08-11T11:55:31Z) - Generative Principal Component Analysis [47.03792476688768]
We study the problem of principal component analysis with generative modeling assumptions.
Key assumption is that the underlying signal lies near the range of an $L$-Lipschitz continuous generative model with bounded $k$-dimensional inputs.
We propose a quadratic estimator, and show that it enjoys a statistical rate of order $sqrtfracklog Lm$, where $m$ is the number of samples.
arXiv Detail & Related papers (2022-03-18T01:48:16Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Pessimistic Q-Learning for Offline Reinforcement Learning: Towards
Optimal Sample Complexity [51.476337785345436]
We study a pessimistic variant of Q-learning in the context of finite-horizon Markov decision processes.
A variance-reduced pessimistic Q-learning algorithm is proposed to achieve near-optimal sample complexity.
arXiv Detail & Related papers (2022-02-28T15:39:36Z) - LSDAT: Low-Rank and Sparse Decomposition for Decision-based Adversarial
Attack [74.5144793386864]
LSDAT crafts perturbations in the low-dimensional subspace formed by the sparse component of the input sample and that of an adversarial sample.
LSD works directly in the image pixel domain to guarantee that non-$ell$ constraints, such as sparsity, are satisfied.
arXiv Detail & Related papers (2021-03-19T13:10:47Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Prediction in latent factor regression: Adaptive PCR and beyond [2.9439848714137447]
We prove a master theorem that establishes a risk bound for a large class of predictors.
We use our main theorem to recover known risk bounds for the minimum-norm interpolating predictor.
We conclude with a detailed simulation study to support and complement our theoretical results.
arXiv Detail & Related papers (2020-07-20T12:42:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.