論文の概要: Resampled Datasets Are Not Enough: Mitigating Societal Bias Beyond Single Attributes
- arxiv url: http://arxiv.org/abs/2407.03623v2
- Date: Thu, 11 Jul 2024 02:38:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 22:08:28.045515
- Title: Resampled Datasets Are Not Enough: Mitigating Societal Bias Beyond Single Attributes
- Title(参考訳): 再サンプリングされたデータセットは不十分。単一属性を超える社会的なバイアスを緩和する
- Authors: Yusuke Hirota, Jerone T. A. Andrews, Dora Zhao, Orestis Papakyriakopoulos, Apostolos Modas, Yuta Nakashima, Alice Xiang,
- Abstract要約: 我々は、保護されたグループと画像属性の急激な相関を取り除き、画像テキストデータセットの社会的バイアスに取り組む。
テキスト誘導インペイントモデルを用いることで、すべての属性から保護されたグループ独立を保証し、データフィルタリングによるインペイントバイアスを軽減する。
- 参考スコア(独自算出の注目度): 23.753205453352987
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We tackle societal bias in image-text datasets by removing spurious correlations between protected groups and image attributes. Traditional methods only target labeled attributes, ignoring biases from unlabeled ones. Using text-guided inpainting models, our approach ensures protected group independence from all attributes and mitigates inpainting biases through data filtering. Evaluations on multi-label image classification and image captioning tasks show our method effectively reduces bias without compromising performance across various models.
- Abstract(参考訳): 我々は、保護されたグループと画像属性の急激な相関を取り除き、画像テキストデータセットの社会的バイアスに取り組む。
従来の手法はラベル付属性のみを対象としており、ラベル付属性のバイアスを無視している。
テキスト誘導インペイントモデルを用いることで、すべての属性から保護されたグループ独立を保証し、データフィルタリングによるインペイントバイアスを軽減する。
マルチラベル画像分類と画像キャプションタスクの評価は,様々なモデルにまたがる性能を損なうことなく,効果的にバイアスを低減できることを示す。
関連論文リスト
- AITTI: Learning Adaptive Inclusive Token for Text-to-Image Generation [53.65701943405546]
我々は適応的包摂トークンを学習し、最終的な生成出力の属性分布をシフトする。
本手法では,明示的な属性仕様やバイアス分布の事前知識は必要としない。
提案手法は,特定の属性を要求されたり,生成の方向を編集するモデルに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2024-06-18T17:22:23Z) - Common-Sense Bias Discovery and Mitigation for Classification Tasks [16.8259488742528]
画像記述に基づいてデータセットの特徴クラスタを抽出するフレームワークを提案する。
解析された特徴と相関は人間に解釈可能であるので、我々はCommon-Sense Bias Discovery (CSBD) という手法を名づける。
実験の結果,2つのベンチマーク画像データセットに対して,複数の分類タスクに新たなバイアスが生じることがわかった。
論文 参考訳(メタデータ) (2024-01-24T03:56:07Z) - Balancing the Picture: Debiasing Vision-Language Datasets with Synthetic
Contrast Sets [52.77024349608834]
視覚言語モデルは、インターネットから未計算の画像テキストペアの事前トレーニング中に学んだ社会的バイアスを永続し、増幅することができる。
COCO Captionsは、背景コンテキストとその場にいる人々の性別間のバイアスを評価するために最も一般的に使用されるデータセットである。
本研究では,COCOデータセットを男女バランスの取れたコントラストセットで拡張する新しいデータセットデバイアスパイプラインを提案する。
論文 参考訳(メタデータ) (2023-05-24T17:59:18Z) - Feature and Label Embedding Spaces Matter in Addressing Image Classifier
Bias [38.297649008463345]
以前の研究では、年齢、性別、肌の色といった保護された属性からの急激な相関が、悪い決定を引き起こす可能性があることが示されている。
特徴空間においてバイアス方向を識別し,各クラスに対する保護属性値のクラスプロトタイプを計算する。
画像入力をラベル埋め込み空間にマッピングすることでバイアスを軽減する。
論文 参考訳(メタデータ) (2021-10-27T10:37:35Z) - Data Generation using Texture Co-occurrence and Spatial Self-Similarity
for Debiasing [6.976822832216875]
本稿では, 反対ラベル付き画像のテクスチャ表現を用いて, 付加画像を明示的に生成する新しいデバイアス手法を提案する。
新たに生成された各画像は、反対ラベルのターゲット画像からテクスチャを転送しながら、ソース画像から類似した空間情報を含む。
本モデルでは,生成画像のテクスチャがターゲットと類似しているか否かを決定するテクスチャ共起損失と,生成画像とソース画像間の空間的詳細がよく保存されているかどうかを決定する空間的自己相似損失とを統合する。
論文 参考訳(メタデータ) (2021-10-15T08:04:59Z) - Semi-supervised Semantic Segmentation with Directional Context-aware
Consistency [66.49995436833667]
我々は、ラベル付きデータの小さなセットに、全くラベル付けされていない画像のより大きなコレクションを提供する半教師付きセグメンテーション問題に焦点をあてる。
好ましいハイレベル表現は、自己認識を失わずにコンテキスト情報をキャプチャするべきである。
我々は,DCロス(Directional Contrastive Loss)を画素対ピクセルの整合性を達成するために提示する。
論文 参考訳(メタデータ) (2021-06-27T03:42:40Z) - Matched sample selection with GANs for mitigating attribute confounding [30.488267816304177]
保護属性間の属性分布のバランスのとれたフルデータセットから画像のサブセットを選択するマッチングアプローチを提案する。
私たちのマッチングアプローチでは、セマンティック属性を保存する方法で、まず実際の画像を生成ネットワークの潜在空間に投影します。
次に、選択された保護属性にまたがるこの潜在空間で敵の一致を見つけ、セマンティクスと知覚属性が保護属性間でバランスをとるデータセットを生成する。
論文 参考訳(メタデータ) (2021-03-24T19:18:44Z) - Learning to Model and Ignore Dataset Bias with Mixed Capacity Ensembles [66.15398165275926]
本稿では,データセット固有のパターンを自動的に検出・無視する手法を提案する。
我々の方法は、より高い容量モデルでアンサンブルで低容量モデルを訓練する。
視覚的質問応答データセットの10ポイントゲインを含む,すべての設定の改善を示す。
論文 参考訳(メタデータ) (2020-11-07T22:20:03Z) - Null-sampling for Interpretable and Fair Representations [8.654168514863649]
データ領域における不変表現を学習し、アルゴリズム的公正性における解釈可能性を実現する。
データドメインに表現を配置することで、モデルによってなされた変更は、人間の監査官によって容易に検査可能である。
論文 参考訳(メタデータ) (2020-08-12T11:49:01Z) - Diverse Image Generation via Self-Conditioned GANs [56.91974064348137]
手動でアノテートされたクラスラベルを使わずに、クラス条件付きGANモデルを訓練する。
代わりに、我々のモデルは、識別器の特徴空間におけるクラスタリングから自動的に派生したラベルに条件付きである。
我々のクラスタリングステップは、自動的に多様なモードを発見し、それらをカバーするためにジェネレータを明示的に必要とします。
論文 参考訳(メタデータ) (2020-06-18T17:56:03Z) - Automatically Discovering and Learning New Visual Categories with
Ranking Statistics [145.89790963544314]
我々は,他のクラスをラベル付けした画像コレクションにおいて,新しいクラスを発見する問題に対処する。
汎用クラスタリングモデルを学び、後者を用いて、非競合データ中の新しいクラスを識別する。
我々は,標準分類ベンチマークに対するアプローチと,新しいカテゴリー発見法の性能を,有意なマージンで評価した。
論文 参考訳(メタデータ) (2020-02-13T18:53:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。