Over the Edge of Chaos? Excess Complexity as a Roadblock to Artificial General Intelligence
- URL: http://arxiv.org/abs/2407.03652v1
- Date: Thu, 4 Jul 2024 05:46:39 GMT
- Title: Over the Edge of Chaos? Excess Complexity as a Roadblock to Artificial General Intelligence
- Authors: Teo Susnjak, Timothy R. McIntosh, Andre L. C. Barczak, Napoleon H. Reyes, Tong Liu, Paul Watters, Malka N. Halgamuge,
- Abstract summary: We posited the existence of critical points, akin to phase transitions in complex systems, where AI performance might plateau or regress into instability upon exceeding a critical complexity threshold.
Our simulations demonstrated how increasing the complexity of the AI system could exceed an upper criticality threshold, leading to unpredictable performance behaviours.
- Score: 4.901955678857442
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this study, we explored the progression trajectories of artificial intelligence (AI) systems through the lens of complexity theory. We challenged the conventional linear and exponential projections of AI advancement toward Artificial General Intelligence (AGI) underpinned by transformer-based architectures, and posited the existence of critical points, akin to phase transitions in complex systems, where AI performance might plateau or regress into instability upon exceeding a critical complexity threshold. We employed agent-based modelling (ABM) to simulate hypothetical scenarios of AI systems' evolution under specific assumptions, using benchmark performance as a proxy for capability and complexity. Our simulations demonstrated how increasing the complexity of the AI system could exceed an upper criticality threshold, leading to unpredictable performance behaviours. Additionally, we developed a practical methodology for detecting these critical thresholds using simulation data and stochastic gradient descent to fine-tune detection thresholds. This research offers a novel perspective on AI advancement that has a particular relevance to Large Language Models (LLMs), emphasising the need for a tempered approach to extrapolating AI's growth potential and underscoring the importance of developing more robust and comprehensive AI performance benchmarks.
Related papers
- Enhancing Feature Selection and Interpretability in AI Regression Tasks Through Feature Attribution [38.53065398127086]
This study investigates the potential of feature attribution methods to filter out uninformative features in input data for regression problems.
We introduce a feature selection pipeline that combines Integrated Gradients with k-means clustering to select an optimal set of variables from the initial data space.
To validate the effectiveness of this approach, we apply it to a real-world industrial problem - blade vibration analysis in the development process of turbo machinery.
arXiv Detail & Related papers (2024-09-25T09:50:51Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - Explainable AI for Enhancing Efficiency of DL-based Channel Estimation [1.0136215038345013]
Support of artificial intelligence based decision-making is a key element in future 6G networks.
In such applications, using AI as black-box models is risky and challenging.
We propose a novel-based XAI-CHEST framework that is oriented toward channel estimation in wireless communications.
arXiv Detail & Related papers (2024-07-09T16:24:21Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
Next-generation multiple input multiple output (MIMO) is expected to be intelligent and scalable.
We propose the concept of the generative AI agent, which is capable of generating tailored and specialized contents.
We present two compelling case studies that demonstrate the effectiveness of leveraging the generative AI agent for performance analysis.
arXiv Detail & Related papers (2024-04-13T02:39:36Z) - Uncertainty Estimation in Multi-Agent Distributed Learning for AI-Enabled Edge Devices [0.0]
Edge IoT devices have seen a paradigm shift with the introduction of FPGAs and AI accelerators.
This advancement has vastly amplified their computational capabilities, emphasizing the practicality of edge AI.
Our study explores methods that enable distributed data processing through AI-enabled edge devices, enhancing collaborative learning capabilities.
arXiv Detail & Related papers (2024-03-14T07:40:32Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
Training large transformers using next-token prediction has given rise to groundbreaking advancements in AI.
While this generative AI approach has produced impressive results, it heavily leans on human supervision.
This strong reliance on human oversight poses a significant hurdle to the advancement of AI innovation.
We propose a novel paradigm termed Exploratory AI (EAI) aimed at autonomously generating high-quality training data.
arXiv Detail & Related papers (2023-10-13T07:03:39Z) - A Comprehensive Performance Study of Large Language Models on Novel AI
Accelerators [2.88634411143577]
Large language models (LLMs) are being considered as a promising approach to address some of the challenging problems.
Specialized AI accelerator hardware systems have recently become available for accelerating AI applications.
arXiv Detail & Related papers (2023-10-06T21:55:57Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
We explore training efficient and robust AI-enhanced numerical solvers with a small data size by mitigating intrinsic noise disturbances.
We first analyze the ability of the self-attention mechanism to regulate noise in supervised learning and then propose a simple-yet-effective numerical solver, Attr, which introduces an additive self-attention mechanism to the numerical solution of differential equations.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - SAIH: A Scalable Evaluation Methodology for Understanding AI Performance
Trend on HPC Systems [18.699431277588637]
We propose a scalable evaluation methodology (SAIH) for analyzing the AI performance trend of HPC systems.
As the data and model constantly scale, we can investigate the trend and range of AI performance on HPC systems.
arXiv Detail & Related papers (2022-12-07T02:42:29Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.