Reliable Projection Based Unsupervised Learning for Semi-Definite QCQP with Application of Beamforming Optimization
- URL: http://arxiv.org/abs/2407.03668v2
- Date: Tue, 9 Jul 2024 07:22:42 GMT
- Title: Reliable Projection Based Unsupervised Learning for Semi-Definite QCQP with Application of Beamforming Optimization
- Authors: Xiucheng Wang, Qi Qiu, Nan Cheng,
- Abstract summary: In this paper, we investigate a special class of quadratic (QCQP) with semi-definite constraints.
We propose a neural network (NN) as a promising method to obtain a high-performing constraint solution.
Unsupervised learning is used, so the NN can be effectively efficiently without labels.
- Score: 11.385703484113552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we investigate a special class of quadratic-constrained quadratic programming (QCQP) with semi-definite constraints. Traditionally, since such a problem is non-convex and N-hard, the neural network (NN) is regarded as a promising method to obtain a high-performing solution. However, due to the inherent prediction error, it is challenging to ensure all solution output by the NN is feasible. Although some existing methods propose some naive methods, they only focus on reducing the constraint violation probability, where not all solutions are feasibly guaranteed. To deal with the above challenge, in this paper a computing efficient and reliable projection is proposed, where all solution output by the NN are ensured to be feasible. Moreover, unsupervised learning is used, so the NN can be trained effectively and efficiently without labels. Theoretically, the solution of the NN after projection is proven to be feasible, and we also prove the projection method can enhance the convergence performance and speed of the NN. To evaluate our proposed method, the quality of service (QoS)-contained beamforming scenario is studied, where the simulation results show the proposed method can achieve high-performance which is competitive with the lower bound.
Related papers
- Optimization Proxies using Limited Labeled Data and Training Time -- A Semi-Supervised Bayesian Neural Network Approach [2.943640991628177]
Constrained optimization problems arise in various engineering system operations such as inventory management electric power grids.
This work introduces a learning scheme using Bayesian Networks (BNNs) to solve constrained optimization problems under limited data and restricted model times.
We show that the proposed learning method outperforms conventional BNN and deep neural network (DNN) architectures.
arXiv Detail & Related papers (2024-10-04T02:10:20Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Self-supervised Equality Embedded Deep Lagrange Dual for Approximate Constrained Optimization [5.412875005737914]
We propose deeprange dual embedding (DeepLDE) as a fast optimal approximators incorporating neural networks (NNs)
We prove the convergence of DeepLDE and primal, nondual-learning method to impose inequality constraints.
We show that the proposed DeepLDE solutions achieve the optimal Lag gap among all the smallest NN-based approaches.
arXiv Detail & Related papers (2023-06-11T13:19:37Z) - Power Control with QoS Guarantees: A Differentiable Projection-based
Unsupervised Learning Framework [14.518558523319518]
Deep neural networks (DNNs) are emerging as a potential solution to solve NP-hard wireless resource allocation problems.
We propose a novel unsupervised learning framework to solve the classical power control problem in a multi-user channel.
We show that the proposed solutions not only improve the data rate but also achieve zero constraint violation probability, compared to the existing computations.
arXiv Detail & Related papers (2023-05-31T14:11:51Z) - A Learning-Based Optimal Uncertainty Quantification Method and Its
Application to Ballistic Impact Problems [1.713291434132985]
This paper concerns the optimal (supremum and infimum) uncertainty bounds for systems where the input (or prior) measure is only partially/imperfectly known.
We demonstrate the learning based framework on the uncertainty optimization problem.
We show that the approach can be used to construct maps for the performance certificate and safety in engineering practice.
arXiv Detail & Related papers (2022-12-28T14:30:53Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Ensuring DNN Solution Feasibility for Optimization Problems with Convex
Constraints and Its Application to DC Optimal Power Flow Problems [25.791128241015684]
Ensuring solution feasibility is a key challenge in developing Deep Neural Network (DNN) schemes for solving constrained optimization problems, due to prediction errors.
We propose a preventive learning'' framework to guarantee DNN solution for problems with convex and general objective functions without post-versaive inequality constraints.
We apply framework to develop DeepOPF+ for solving essential DC optimal power flow problems in grid operation.
arXiv Detail & Related papers (2021-12-15T13:05:59Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z) - Chance-Constrained Control with Lexicographic Deep Reinforcement
Learning [77.34726150561087]
This paper proposes a lexicographic Deep Reinforcement Learning (DeepRL)-based approach to chance-constrained Markov Decision Processes.
A lexicographic version of the well-known DeepRL algorithm DQN is also proposed and validated via simulations.
arXiv Detail & Related papers (2020-10-19T13:09:14Z) - Global Optimization of Objective Functions Represented by ReLU Networks [77.55969359556032]
Neural networks can learn complex, non- adversarial functions, and it is challenging to guarantee their correct behavior in safety-critical contexts.
Many approaches exist to find failures in networks (e.g., adversarial examples), but these cannot guarantee the absence of failures.
We propose an approach that integrates the optimization process into the verification procedure, achieving better performance than the naive approach.
arXiv Detail & Related papers (2020-10-07T08:19:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.