Text2TimeSeries: Enhancing Financial Forecasting through Time Series Prediction Updates with Event-Driven Insights from Large Language Models
- URL: http://arxiv.org/abs/2407.03689v1
- Date: Thu, 4 Jul 2024 07:21:38 GMT
- Title: Text2TimeSeries: Enhancing Financial Forecasting through Time Series Prediction Updates with Event-Driven Insights from Large Language Models
- Authors: Litton Jose Kurisinkel, Pruthwik Mishra, Yue Zhang,
- Abstract summary: We propose a collaborative modeling framework that incorporates textual information about relevant events for predictions.
We leverage the intuition of large language models about future changes to update real number time series predictions.
- Score: 9.991327369572819
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series models, typically trained on numerical data, are designed to forecast future values. These models often rely on weighted averaging techniques over time intervals. However, real-world time series data is seldom isolated and is frequently influenced by non-numeric factors. For instance, stock price fluctuations are impacted by daily random events in the broader world, with each event exerting a unique influence on price signals. Previously, forecasts in financial markets have been approached in two main ways: either as time-series problems over price sequence or sentiment analysis tasks. The sentiment analysis tasks aim to determine whether news events will have a positive or negative impact on stock prices, often categorizing them into discrete labels. Recognizing the need for a more comprehensive approach to accurately model time series prediction, we propose a collaborative modeling framework that incorporates textual information about relevant events for predictions. Specifically, we leverage the intuition of large language models about future changes to update real number time series predictions. We evaluated the effectiveness of our approach on financial market data.
Related papers
- TimeCAP: Learning to Contextualize, Augment, and Predict Time Series Events with Large Language Model Agents [52.13094810313054]
TimeCAP is a time-series processing framework that creatively employs Large Language Models (LLMs) as contextualizers of time series data.
TimeCAP incorporates two independent LLM agents: one generates a textual summary capturing the context of the time series, while the other uses this enriched summary to make more informed predictions.
Experimental results on real-world datasets demonstrate that TimeCAP outperforms state-of-the-art methods for time series event prediction.
arXiv Detail & Related papers (2025-02-17T04:17:27Z) - Financial Fine-tuning a Large Time Series Model [1.2894076331861153]
We evaluate the performance of the latest time series foundation model TimesFM on price prediction.
We find that due to the irregular nature of price data, directly applying TimesFM gives unsatisfactory results.
We propose to fine-tune TimeFM on financial data for the task of price prediction.
arXiv Detail & Related papers (2024-12-13T05:51:00Z) - Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - From News to Forecast: Integrating Event Analysis in LLM-Based Time Series Forecasting with Reflection [16.47323362700347]
We introduce a novel approach to enhance time series forecasting by reasoning across both text and time series data.
With language as a medium, our method adaptively integrates social events into forecasting models, aligning news content with time series fluctuations to provide richer insights.
Specifically, we utilize LLM-based agents to iteratively filter out irrelevant news and employ human-like reasoning to evaluate predictions.
arXiv Detail & Related papers (2024-09-26T03:50:22Z) - Learning Graph Structures and Uncertainty for Accurate and Calibrated Time-series Forecasting [65.40983982856056]
We introduce STOIC, that leverages correlations between time-series to learn underlying structure between time-series and to provide well-calibrated and accurate forecasts.
Over a wide-range of benchmark datasets STOIC provides 16% more accurate and better-calibrated forecasts.
arXiv Detail & Related papers (2024-07-02T20:14:32Z) - Rating Multi-Modal Time-Series Forecasting Models (MM-TSFM) for Robustness Through a Causal Lens [10.103561529332184]
We focus on multi-modal time-series forecasting, where imprecision due to noisy or incorrect data can lead to erroneous predictions.
We introduce a rating methodology to assess the robustness of Multi-Modal Time-Series Forecasting Models.
arXiv Detail & Related papers (2024-06-12T17:39:16Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - An End-to-End Time Series Model for Simultaneous Imputation and Forecast [14.756607742477252]
We develop an end-to-end time series model that aims to learn the inference relation and make a multiple-step ahead forecast.
Our framework trains jointly two neural networks, one to learn the feature-wise correlations and the other for the modeling of temporal behaviors.
arXiv Detail & Related papers (2023-06-01T15:08:22Z) - Learning Non-Stationary Time-Series with Dynamic Pattern Extractions [16.19692047595777]
State-of-the-art algorithms have achieved a decent performance in dealing with stationary temporal data.
Traditional algorithms that tackle stationary time-series do not apply to non-stationary series like Forex trading.
This paper investigates applicable models that can improve the accuracy of forecasting future trends of non-stationary time-series sequences.
arXiv Detail & Related papers (2021-11-20T10:52:37Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
Deep learning models have led to significant performance improvements in many problems coming from different domains, including prediction problems of financial time-series data.
The Temporal Attention-Augmented Bilinear network was recently proposed as an efficient and high-performing model for Limit Order Book time-series forecasting.
In this paper, we propose a low-rank tensor approximation of the model to further reduce the number of trainable parameters and increase its speed.
arXiv Detail & Related papers (2021-07-05T10:15:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.