Relational Neural Machines
- URL: http://arxiv.org/abs/2002.02193v1
- Date: Thu, 6 Feb 2020 10:53:57 GMT
- Title: Relational Neural Machines
- Authors: Giuseppe Marra, Michelangelo Diligenti, Francesco Giannini, Marco Gori
and Marco Maggini
- Abstract summary: This paper presents a novel framework allowing jointly train the parameters of the learners and of a First-Order Logic based reasoner.
A Neural Machine is able recover both classical learning results in case of pure sub-symbolic learning, and Markov Logic Networks.
Proper algorithmic solutions are devised to make learning and inference tractable in large-scale problems.
- Score: 19.569025323453257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has been shown to achieve impressive results in several tasks
where a large amount of training data is available. However, deep learning
solely focuses on the accuracy of the predictions, neglecting the reasoning
process leading to a decision, which is a major issue in life-critical
applications. Probabilistic logic reasoning allows to exploit both statistical
regularities and specific domain expertise to perform reasoning under
uncertainty, but its scalability and brittle integration with the layers
processing the sensory data have greatly limited its applications. For these
reasons, combining deep architectures and probabilistic logic reasoning is a
fundamental goal towards the development of intelligent agents operating in
complex environments. This paper presents Relational Neural Machines, a novel
framework allowing to jointly train the parameters of the learners and of a
First--Order Logic based reasoner. A Relational Neural Machine is able to
recover both classical learning from supervised data in case of pure
sub-symbolic learning, and Markov Logic Networks in case of pure symbolic
reasoning, while allowing to jointly train and perform inference in hybrid
learning tasks. Proper algorithmic solutions are devised to make learning and
inference tractable in large-scale problems. The experiments show promising
results in different relational tasks.
Related papers
- Reasoning Algorithmically in Graph Neural Networks [1.8130068086063336]
We aim to integrate the structured and rule-based reasoning of algorithms with adaptive learning capabilities of neural networks.
This dissertation provides theoretical and practical contributions to this area of research.
arXiv Detail & Related papers (2024-02-21T12:16:51Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
We propose Mulan, a unified multi-modal causal structure learning method for root cause localization.
We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data.
We also introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph.
arXiv Detail & Related papers (2024-02-04T05:50:38Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
We propose a general bi-level probabilistic graphical reasoning framework called GBPGR.
In GBPGR, the results of symbolic reasoning are utilized to refine and correct the predictions made by the deep learning models.
Our approach achieves high performance and exhibits effective generalization in both transductive and inductive tasks.
arXiv Detail & Related papers (2023-09-16T09:15:37Z) - Interpretable Multimodal Misinformation Detection with Logic Reasoning [40.851213962307206]
We propose a novel logic-based neural model for multimodal misinformation detection.
We parameterize symbolic logical elements using neural representations, which facilitate the automatic generation and evaluation of meaningful logic clauses.
Results on three public datasets demonstrate the feasibility and versatility of our model.
arXiv Detail & Related papers (2023-05-10T08:16:36Z) - Continual Reasoning: Non-Monotonic Reasoning in Neurosymbolic AI using
Continual Learning [2.912595438026074]
We show that by combining a neural-symbolic system with methods from continual learning, Logic Networks can obtain a higher level of accuracy.
Continual learning is added to LTNs by adopting a curriculum of learning from knowledge and data with recall.
Results indicate significant improvement on the non-monotonic reasoning problem.
arXiv Detail & Related papers (2023-05-03T15:11:34Z) - Rethinking Complex Queries on Knowledge Graphs with Neural Link Predictors [58.340159346749964]
We propose a new neural-symbolic method to support end-to-end learning using complex queries with provable reasoning capability.
We develop a new dataset containing ten new types of queries with features that have never been considered.
Our method outperforms previous methods significantly in the new dataset and also surpasses previous methods in the existing dataset at the same time.
arXiv Detail & Related papers (2023-04-14T11:35:35Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Reinforcement Learning with External Knowledge by using Logical Neural
Networks [67.46162586940905]
A recent neuro-symbolic framework called the Logical Neural Networks (LNNs) can simultaneously provide key-properties of both neural networks and symbolic logic.
We propose an integrated method that enables model-free reinforcement learning from external knowledge sources.
arXiv Detail & Related papers (2021-03-03T12:34:59Z) - Neural Logic Reasoning [47.622957656745356]
We propose Logic-Integrated Neural Network (LINN) to integrate the power of deep learning and logic reasoning.
LINN learns basic logical operations such as AND, OR, NOT as neural modules, and conducts propositional logical reasoning through the network for inference.
Experiments show that LINN significantly outperforms state-of-the-art recommendation models in Top-K recommendation.
arXiv Detail & Related papers (2020-08-20T14:53:23Z) - Neural Collaborative Reasoning [31.03627817834551]
We propose Collaborative Filtering (CF) to Collaborative Reasoning (CR)
CR means that each user knows part of the reasoning space, and they collaborate for reasoning in the space to estimate preferences for each other.
We integrate the power of representation learning and logical reasoning, where representations capture similarity patterns in data from perceptual perspectives.
arXiv Detail & Related papers (2020-05-16T23:29:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.