論文の概要: GraphCNNpred: A stock market indices prediction using a Graph based deep learning system
- arxiv url: http://arxiv.org/abs/2407.03760v2
- Date: Wed, 17 Jul 2024 11:07:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 21:38:02.847501
- Title: GraphCNNpred: A stock market indices prediction using a Graph based deep learning system
- Title(参考訳): GraphCNNpred: グラフベースのディープラーニングシステムを用いた株式市場の予測指標
- Authors: Yuhui Jin,
- Abstract要約: 我々は,テキストS&textP 500,NASDAQ,DJI,NYSE,RASELの指標の傾向を予測するために,さまざまなデータソースに適用可能なグラフニューラルネットワークベースの畳み込みニューラルネットワーク(CNN)モデルを提案する。
実験の結果,F測度の観点からは,ベースラインアルゴリズム上のすべての指標の予測性能が約4%から15%に向上した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The application of deep learning techniques for predicting stock market prices is a prominent and widely researched topic in the field of data science. To effectively predict market trends, it is essential to utilize a diversified dataset. In this paper, we give a graph neural network based convolutional neural network (CNN) model, that can be applied on diverse source of data, in the attempt to extract features to predict the trends of indices of \text{S}\&\text{P} 500, NASDAQ, DJI, NYSE, and RUSSEL. The experiments show that the associated models improve the performance of prediction in all indices over the baseline algorithms by about $4\% \text{ to } 15\%$, in terms of F-measure. A trading simulation is generated from predictions and gained a Sharpe ratio of over 3.
- Abstract(参考訳): 株式市場価格を予測するためのディープラーニング技術の応用は、データサイエンス分野において顕著で広く研究されているトピックである。
市場の動向を効果的に予測するためには、多様化したデータセットを活用することが不可欠である。
本稿では,グラフニューラルネットワークをベースとした畳み込みニューラルネットワーク(CNN)モデルを提案する。これはさまざまなデータソースに適用可能であり,NASDAQ, DJI, NYSE, RUSSELのインデックスの傾向を予測するための特徴を抽出する。
実験の結果,F測度の観点からは,ベースラインアルゴリズム上のすべての指標の予測性能を約4\% \text{to } 15\%$で改善した。
予測からトレーディングシミュレーションが生成され,シャープ比が3。
関連論文リスト
- F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - A Study on Stock Forecasting Using Deep Learning and Statistical Models [3.437407981636465]
本稿では、株価予測のための多くのディープラーニングアルゴリズムを概説し、トレーニングとテストにs&p500インデックスデータを用いた。
自動回帰積分移動平均モデル、リカレントニューラルネットワークモデル、長い短期モデル、畳み込みニューラルネットワークモデル、完全な畳み込みニューラルネットワークモデルなど、さまざまなモデルについて議論する。
論文 参考訳(メタデータ) (2024-02-08T16:45:01Z) - NETpred: Network-based modeling and prediction of multiple connected
market indices [8.122270502556372]
我々は、複数の関連指標とその在庫を表す新しいグラフを生成する、NETpredというフレームワークを紹介した。
次に、状態空間の異なる部分をカバーし、価格の動きを正確に予測できる多様な代表ノードの集合を徹底的に選択する。
得られたモデルを使用して、最終的に集約されたストックラベルを予測し、グラフ内のすべてのインデックスノードのラベルを推測する。
論文 参考訳(メタデータ) (2022-12-02T17:23:09Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated
Causal Convolutions [78.6363825307044]
本稿では,Dilated Causal Convolutionsに基づくDeepVolモデルを提案する。
拡張畳み込みフィルタは日内財務データから関連情報を抽出するのに最適であることを示す。
論文 参考訳(メタデータ) (2022-09-23T16:13:47Z) - CARD: Classification and Regression Diffusion Models [51.0421331214229]
本稿では,条件生成モデルと事前学習条件平均推定器を組み合わせた分類と回帰拡散(CARD)モデルを提案する。
おもちゃの例と実世界のデータセットを用いて条件分布予測におけるCARDの卓越した能力を示す。
論文 参考訳(メタデータ) (2022-06-15T03:30:38Z) - Compatible deep neural network framework with financial time series
data, including data preprocessor, neural network model and trading strategy [2.347843817145202]
この研究は、新しいディープニューラルネットワークアーキテクチャと、それらをモデルに供給する前に、財務データをどのように準備するかという新しいアイデアを紹介する。
この手法を評価するために3つの異なるデータセットが使用され、その結果、このフレームワークが有益でロバストな予測を私たちに提供できることが示されている。
論文 参考訳(メタデータ) (2022-05-11T20:44:08Z) - Datamodels: Predicting Predictions from Training Data [86.66720175866415]
本稿では,モデルクラスの振る舞いを学習データの観点から分析するための概念的枠組みであるデータモデリングについて述べる。
単純な線形データモデルであっても、モデル出力をうまく予測できることが示される。
論文 参考訳(メタデータ) (2022-02-01T18:15:24Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
我々は、新しい自己教師型学習フレームワーク、グラフ情報支援ノード機能exTraction (GIANT)を提案する。
GIANT は eXtreme Multi-label Classification (XMC) 形式を利用しており、これはグラフ情報に基づいた言語モデルの微調整に不可欠である。
我々は,Open Graph Benchmarkデータセット上での標準GNNパイプラインよりもGIANTの方が優れた性能を示す。
論文 参考訳(メタデータ) (2021-10-29T19:55:12Z) - Evaluating data augmentation for financial time series classification [85.38479579398525]
2つの最先端ディープラーニングモデルを用いて,ストックデータセットに適用したいくつかの拡張手法を評価する。
比較的小さなデータセット拡張手法では、リスク調整された戻り値のパフォーマンスが最大400%向上する。
より大きなストックデータセット拡張メソッドでは、最大40%の改善が達成される。
論文 参考訳(メタデータ) (2020-10-28T17:53:57Z) - A Novel Ensemble Deep Learning Model for Stock Prediction Based on Stock
Prices and News [7.578363431637128]
本稿では、感情分析を用いて、複数のテキストデータソースから有用な情報を抽出し、将来のストックムーブメントを予測することを提案する。
ブレンディングアンサンブルモデルには、2つのレベルがある。第1レベルには、2つのリカレントニューラルネットワーク(RNN)、1つのLong-Short Term Memory Network(LSTM)、1つのGated Recurrent Units Network(GRU)が含まれる。
完全に接続されたニューラルネットワークは、予測精度をさらに向上するために、複数の個々の予測結果をアンサンブルするために使用される。
論文 参考訳(メタデータ) (2020-07-23T15:25:37Z) - Stock Price Prediction Using Convolutional Neural Networks on a
Multivariate Timeseries [0.0]
機械学習アプローチを使用して様々な予測モデルを構築し、そのモデルを使用して、2019年のNIFTY 50のクローズバリューを予測する。
NIFTY指数運動パターンの予測には,多くの分類法を用い,NIFTY指数の実際の閉値の予測には様々な回帰モデルを構築した。
我々は、予測に使用する変数の数が異なる3つのアプローチを用いて、将来のNIFTY指数値を予測する際のCNNの力を利用する。
論文 参考訳(メタデータ) (2020-01-10T03:27:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。