Multi-Time Scale Service Caching and Pricing in MEC Systems with Dynamic Program Popularity
- URL: http://arxiv.org/abs/2407.03804v1
- Date: Thu, 4 Jul 2024 10:23:56 GMT
- Title: Multi-Time Scale Service Caching and Pricing in MEC Systems with Dynamic Program Popularity
- Authors: Yiming Chen, Xingyuan Hu, Bo Gu, Shimin Gong, Zhou Su,
- Abstract summary: In mobile edge computing systems, base stations (BSs) provide computing services to users to reduce their task execution time.
The BS prices the service programs based on user demand to maximize its own profit, while the users determine their offloading strategies based on the prices to minimize their costs.
We propose a two-time scale framework to jointly optimize service caching, pricing and task offloading.
- Score: 20.108014787877025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In mobile edge computing systems, base stations (BSs) equipped with edge servers can provide computing services to users to reduce their task execution time. However, there is always a conflict of interest between the BS and users. The BS prices the service programs based on user demand to maximize its own profit, while the users determine their offloading strategies based on the prices to minimize their costs. Moreover, service programs need to be pre-cached to meet immediate computing needs. Due to the limited caching capacity and variations in service program popularity, the BS must dynamically select which service programs to cache. Since service caching and pricing have different needs for adjustment time granularities, we propose a two-time scale framework to jointly optimize service caching, pricing and task offloading. For the large time scale, we propose a game-nested deep reinforcement learning algorithm to dynamically adjust service caching according to the estimated popularity information. For the small time scale, by modeling the interaction between the BS and users as a two-stage game, we prove the existence of the equilibrium under incomplete information and then derive the optimal pricing and offloading strategies. Extensive simulations based on a real-world dataset demonstrate the efficiency of the proposed approach.
Related papers
- Leveraging Microservices Architecture for Dynamic Pricing in the Travel Industry: Algorithms, Scalability, and Impact on Revenue and Customer Satisfaction [1.03590082373586]
This research investigates the implementation of a real-time,-oriented dynamic pricing system for the travel sector.
The system is designed to address factors such as demand, competitor pricing, and other external circumstances in real-time.
Both controlled simulation and real-life application showed a respectable gain of 22% in revenue generation and a 17% improvement in pricing response time.
arXiv Detail & Related papers (2024-11-03T17:24:02Z) - SCALM: Towards Semantic Caching for Automated Chat Services with Large Language Models [15.742472622602557]
We propose SCALM, a new cache architecture that emphasizes semantic analysis and identifies significant cache entries and patterns.
Our evaluations show that SCALM increases cache hit ratios and reduces operational costs for LLMChat services.
arXiv Detail & Related papers (2024-05-24T08:16:22Z) - SpotServe: Serving Generative Large Language Models on Preemptible
Instances [64.18638174004151]
SpotServe is the first distributed large language models serving system on preemptible instances.
We show that SpotServe can reduce the P99 tail latency by 2.4 - 9.1x compared with the best existing LLM serving systems.
We also show that SpotServe can leverage the price advantage of preemptive instances, saving 54% monetary cost compared with only using on-demand instances.
arXiv Detail & Related papers (2023-11-27T06:31:17Z) - Accelerating Deep Learning Classification with Error-controlled
Approximate-key Caching [72.50506500576746]
We propose a novel caching paradigm, that we named approximate-key caching.
While approximate cache hits alleviate DL inference workload and increase the system throughput, they however introduce an approximation error.
We analytically model our caching system performance for classic LRU and ideal caches, we perform a trace-driven evaluation of the expected performance, and we compare the benefits of our proposed approach with the state-of-the-art similarity caching.
arXiv Detail & Related papers (2021-12-13T13:49:11Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
A privacy-preserving distributed deep policy gradient (P2D3PG) is proposed to maximize the cache hit rates of devices in the MEC networks.
We convert the distributed optimizations into model-free Markov decision process problems and then introduce a privacy-preserving federated learning method for popularity prediction.
arXiv Detail & Related papers (2021-10-20T02:48:27Z) - Learning from Images: Proactive Caching with Parallel Convolutional
Neural Networks [94.85780721466816]
A novel framework for proactive caching is proposed in this paper.
It combines model-based optimization with data-driven techniques by transforming an optimization problem into a grayscale image.
Numerical results show that the proposed scheme can reduce 71.6% computation time with only 0.8% additional performance cost.
arXiv Detail & Related papers (2021-08-15T21:32:47Z) - Learning Augmented Index Policy for Optimal Service Placement at the
Network Edge [8.136957953239254]
We consider the problem of service placement at the network edge, in which a decision maker has to choose between $N$ services to host at the edge.
Our goal is to design adaptive algorithms to minimize the average service delivery latency for customers.
arXiv Detail & Related papers (2021-01-10T23:54:59Z) - A Predictive Autoscaler for Elastic Batch Jobs [8.354712625979776]
Large batch jobs such as Deep Learning, HPC and Spark require far more computational resources and higher cost than conventional online service.
We propose a predictive autoscaler to provide an elastic interface for the customers and overprovision instances.
arXiv Detail & Related papers (2020-10-10T17:35:55Z) - An online learning approach to dynamic pricing and capacity sizing in
service systems [26.720986177499338]
We study a dynamic pricing and capacity sizing problem in a $GI/GI/1$ queue.
Our framework is dubbed Gradient-based Online Learning in Queue (GOLiQ)
arXiv Detail & Related papers (2020-09-07T07:17:20Z) - Multi-Armed Bandit Based Client Scheduling for Federated Learning [91.91224642616882]
federated learning (FL) features ubiquitous properties such as reduction of communication overhead and preserving data privacy.
In each communication round of FL, the clients update local models based on their own data and upload their local updates via wireless channels.
This work provides a multi-armed bandit-based framework for online client scheduling (CS) in FL without knowing wireless channel state information and statistical characteristics of clients.
arXiv Detail & Related papers (2020-07-05T12:32:32Z) - Federated Learning for Task and Resource Allocation in Wireless High
Altitude Balloon Networks [160.96150373385768]
The problem of minimizing energy and time consumption for task computation and transmission is studied in a mobile edge computing (MEC)-enabled balloon network.
A support vector machine (SVM)-based federated learning (FL) algorithm is proposed to determine the user association proactively.
The proposed SVM-based FL method enables each HAB to cooperatively build an SVM model that can determine all user associations.
arXiv Detail & Related papers (2020-03-19T14:18:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.