Apt-Serve: Adaptive Request Scheduling on Hybrid Cache for Scalable LLM Inference Serving
- URL: http://arxiv.org/abs/2504.07494v1
- Date: Thu, 10 Apr 2025 06:51:23 GMT
- Title: Apt-Serve: Adaptive Request Scheduling on Hybrid Cache for Scalable LLM Inference Serving
- Authors: Shihong Gao, Xin Zhang, Yanyan Shen, Lei Chen,
- Abstract summary: Apt-Serve is a framework designed to enhance effective throughput in large language model (LLM) inference serving systems.<n>A new hybrid cache scheme combines KV cache with a memory-efficient hidden cache for reusable input hidden state vectors, allowing large batch sizes and improving request.<n>We show that Apt-Serve achieves up to 8.8x improvement in effective throughput compared to the state-of-the-art inference serving systems.
- Score: 22.66354939370058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language model (LLM) inference serving systems are essential to various LLM-based applications. As demand for LLM services continues to grow, scaling these systems to handle high request rates while meeting latency Service-Level Objectives (SLOs), referred to as effective throughput, becomes critical. However, existing systems often struggle to improve effective throughput, primarily due to a significant decline in Time To First Token (TTFT) SLO attainment. We identify two major causes of this bottleneck: (1) memory-intensive KV cache that limits batch size expansion under GPU memory constraints, and (2) rigid batch composition enforced by the default First-Come-First-Serve scheduling policy. In this paper, we introduce Apt-Serve, a scalable framework designed to enhance effective throughput in LLM inference serving. Apt-Serve features a new hybrid cache scheme that combines KV cache with a memory-efficient hidden cache for reusable input hidden state vectors, allowing large batch sizes and improving request concurrency. Based on the hybrid cache, Apt-Serve employs an adaptive runtime scheduling mechanism that dynamically optimizes batch composition. We formally define the adaptive scheduling optimization problem and propose an efficient algorithm with theoretical guarantees. Extensive evaluations on three real-world datasets and LLMs ranging from 13B to 66B parameters demonstrate that Apt-Serve achieves up to 8.8x improvement in effective throughput compared to the state-of-the-art inference serving systems.
Related papers
- semi-PD: Towards Efficient LLM Serving via Phase-Wise Disaggregated Computation and Unified Storage [6.805644270436825]
We propose a novel large language model (LLM) serving system, semi-PD, characterized by disaggregated computation and unified storage.
Compared to state-of-the-art systems, semi-PD maintains lower latency at higher request rates, reducing the average end-to-end latency per request by 1.27-2.58x.
arXiv Detail & Related papers (2025-04-28T15:00:03Z) - Optimizing LLM Inference: Fluid-Guided Online Scheduling with Memory Constraints [14.341123057506827]
Large Language Models (LLMs) are indispensable in today's applications, but their inference procedure demands significant computational resources.
This paper formulates LLM inference optimization as a multi-stage online scheduling problem.
We develop a fluid dynamics approximation to provide a tractable benchmark that guides algorithm design.
arXiv Detail & Related papers (2025-04-15T16:00:21Z) - Federated Fine-Tuning of LLMs: Framework Comparison and Research Directions [59.5243730853157]
Federated learning (FL) provides a privacy-preserving solution for fine-tuning pre-trained large language models (LLMs) using distributed private datasets.
This article conducts a comparative analysis of three advanced federated LLM (FedLLM) frameworks that integrate knowledge distillation (KD) and split learning (SL) to mitigate these issues.
arXiv Detail & Related papers (2025-01-08T11:37:06Z) - FastSwitch: Optimizing Context Switching Efficiency in Fairness-aware Large Language Model Serving [2.5833506260502306]
Existing systems tend to overly prioritize throughput, overlooking the overhead caused by preemption-induced context switching.<n>FastSwitch is a fairness-aware serving system that not only aligns with existing KV cache memory allocation policy but also mitigates context switching overhead.<n>Our evaluation shows that FastSwitch outperforms the state-of-the-art LLM serving system vLLM with speedups of 1.4-11.2x across different tail TTFT and TBT.
arXiv Detail & Related papers (2024-11-27T15:07:28Z) - ALISE: Accelerating Large Language Model Serving with Speculative Scheduling [7.367068885621016]
Large Language Models (LLMs) represent a revolutionary advancement in the contemporary landscape of artificial general intelligence (AGI)
In this paper, we propose a new efficient LLM inference serving framework, named ALISE.
We show that ALISE improves the throughput of inference serving by up to 1.8x and 2.1x under the same latency constraint on the Alpaca and ShareGPT datasets, respectively.
arXiv Detail & Related papers (2024-10-31T00:58:11Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
Large Language Model (LLM) based multi-agent systems (MAS) show remarkable potential in collaborative problem-solving.
Yet they still face critical challenges: low communication efficiency, poor scalability, and a lack of effective parameter-updating optimization methods.
We present Optima, a novel framework that addresses these issues by significantly enhancing both communication efficiency and task effectiveness.
arXiv Detail & Related papers (2024-10-10T17:00:06Z) - Digital Twin-Assisted Data-Driven Optimization for Reliable Edge Caching in Wireless Networks [60.54852710216738]
We introduce a novel digital twin-assisted optimization framework, called D-REC, to ensure reliable caching in nextG wireless networks.
By incorporating reliability modules into a constrained decision process, D-REC can adaptively adjust actions, rewards, and states to comply with advantageous constraints.
arXiv Detail & Related papers (2024-06-29T02:40:28Z) - LoongServe: Efficiently Serving Long-Context Large Language Models with Elastic Sequence Parallelism [12.521026493432181]
Existing large language models (LLMs) cannot efficiently serve variable-length requests in different phases.
We propose a new parallelism paradigm, elastic sequence parallelism (ESP), to adapt to the variance between different requests and phases.
LoongServe improves the maximum throughput by up to 3.85$times$ compared to the chunked prefill and 5.81$times$ compared to the prefill-decoding disaggregation.
arXiv Detail & Related papers (2024-04-15T07:45:04Z) - SpotServe: Serving Generative Large Language Models on Preemptible
Instances [64.18638174004151]
SpotServe is the first distributed large language models serving system on preemptible instances.
We show that SpotServe can reduce the P99 tail latency by 2.4 - 9.1x compared with the best existing LLM serving systems.
We also show that SpotServe can leverage the price advantage of preemptive instances, saving 54% monetary cost compared with only using on-demand instances.
arXiv Detail & Related papers (2023-11-27T06:31:17Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
Federated learning (FL) is a promising paradigm to enable collaborative model training with decentralized data.
The training process of Large Language Models (LLMs) generally incurs the update of significant parameters.
This paper proposes an efficient partial prompt tuning approach to improve performance and efficiency simultaneously.
arXiv Detail & Related papers (2023-10-23T16:37:59Z) - Fast Distributed Inference Serving for Large Language Models [12.703624317418237]
We present FastServe, a distributed inference serving system for large language models (LLMs)
FastServe exploits the autoregressive pattern of LLM inference to enable preemption at the granularity of each output token.
We build a system prototype of FastServe and experimental results show that compared to the state-of-the-art solution vLLM, FastServe improves the throughput by up to 31.4x and 17.9x under the same average and tail latency requirements, respectively.
arXiv Detail & Related papers (2023-05-10T06:17:50Z) - Accelerating Deep Learning Classification with Error-controlled
Approximate-key Caching [72.50506500576746]
We propose a novel caching paradigm, that we named approximate-key caching.
While approximate cache hits alleviate DL inference workload and increase the system throughput, they however introduce an approximation error.
We analytically model our caching system performance for classic LRU and ideal caches, we perform a trace-driven evaluation of the expected performance, and we compare the benefits of our proposed approach with the state-of-the-art similarity caching.
arXiv Detail & Related papers (2021-12-13T13:49:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.