High-quality entangled photon source by symmetric beam displacement design
- URL: http://arxiv.org/abs/2407.03806v2
- Date: Thu, 11 Jul 2024 11:51:01 GMT
- Title: High-quality entangled photon source by symmetric beam displacement design
- Authors: Giacomo Paganini, Alvaro Cuevas, Robin Camphausen, Alexander Demuth, Valerio Pruneri,
- Abstract summary: Entangled photon sources are pivotal in advancing quantum communication, computing and sensing.
This work introduces a polarization-entangled photon source, leveraging type-0 spontaneous parametric down-conversion.
We attained a maximal Bell inequality violation, with the average entanglement visibility exceeding 99%.
- Score: 39.58317527488534
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Entangled photon sources (EPSs) are pivotal in advancing quantum communication, computing and sensing. The demand for deploying efficient, robust EPSs in the field, characterized by exceptional (phase) stability, has become increasingly apparent. This work introduces a polarization-entangled photon source, leveraging type-0 spontaneous parametric down-conversion, and constructed using commercial bulk optomechanical components. Our system is versatile, enabling the generation of N00N states for sensing applications or Bell states for quantum key distribution protocols. We attained a maximal Bell inequality violation, with the average entanglement visibility exceeding 99% . The potential for further performance enhancements is also explored.
Related papers
- All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - A source of entangled photons based on a cavity-enhanced and strain-tuned GaAs quantum dot [0.03829341169189996]
We develop a novel device consisting of a quantum dot embedded in a circular Bragg resonator, in turn, integrated onto a micromachined piezoelectric actuator.
The resonator engineers the light-matter interaction to empower extraction efficiencies up to 0.69(4).
The actuator manipulates strain fields that tune the quantum dot for the generation of entangled photons with corrected fidelities to a maximally entangled state up to 0.96(1).
arXiv Detail & Related papers (2022-12-23T18:06:32Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - On chip scalable highly pure and indistinguishable single photon sources
in ordered arrays: Path to Quantum Optical Circuits [3.824032758489195]
We report on a novel platform of single photon sources based upon a novel class of epitaxial quantum dots.
Under resonant excitation, the SPSs show single photon purity >99%, high two-photon Hong-Ou-Mandel interference visibilities, and spectral nonuniformity 3nm.
Our platform of SPSs paves the path to creating on-chip scalable quantum photonic systems.
arXiv Detail & Related papers (2021-08-03T12:00:47Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Climbing the Fock ladder: Advancing multiphoton state generation [0.0]
A scheme for the enhanced generation of higher photon-number states is realized, using an optical time-multiplexing setting.
We use a quantum feedback mechanism for already generated photons to induce self-seeding of the consecutive nonlinear process.
We compare the fidelities and success probabilities of our protocol with the common direct heralding of photon-number states.
arXiv Detail & Related papers (2021-05-08T15:38:56Z) - Entangled Photon-Pair Sources based on three-wave mixing in bulk
crystals [61.84816391246232]
Entangled photon-pairs are a critical resource in quantum communication protocols ranging from quantum key distribution to teleportation.
The increased prominence of quantum networks has led to growing interest in deployable high performance entangled photon-pair sources.
This manuscript provides a review of the state-of-the-art for bulk-optics-based SPDC sources with continuous wave pump.
arXiv Detail & Related papers (2020-07-30T10:35:06Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Dipole-Coupled Defect Pairs as Deterministic Entangled Photon Pair
Sources [0.0]
We show a scheme that uses a dipole-coupled defect pair to deterministically emit polarization-entangled photon pairs.
We predict spectroscopic signatures and quantify the entanglement with physically realizable system parameters.
arXiv Detail & Related papers (2020-04-28T18:00:01Z) - Scalable integrated single-photon source [0.0]
Photonic qubits are key enablers for quantum-information processing deployable across a distributed quantum network.
A main challenge is to overcome noise and decoherence processes in order to reach the benchmarks on generation efficiency and photon indistinguishability.
We report on the realization of a deterministic single-photon source featuring near-unity indistinguishability using a quantum dot in an 'on-chip'
The device produces long strings of $>100$ single photons without any observable decrease in the mutual indistinguishability between photons.
arXiv Detail & Related papers (2020-03-19T17:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.