Seamless Monitoring of Stress Levels Leveraging a Universal Model for Time Sequences
- URL: http://arxiv.org/abs/2407.03821v1
- Date: Thu, 4 Jul 2024 10:46:09 GMT
- Title: Seamless Monitoring of Stress Levels Leveraging a Universal Model for Time Sequences
- Authors: Davide Gabrielli, Bardh Prenkaj, Paola Velardi,
- Abstract summary: This paper presents a methodology for stress detection from a smartwatch based on a universal model for time series, UniTS.
We demonstrate that our proposed model considerably surpasses 12 top-performing methods on 3 benchmark datasets.
- Score: 4.308104021015939
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monitoring the stress level in patients with neurodegenerative diseases can help manage symptoms, improve patient's quality of life, and provide insight into disease progression. In the literature, ECG, actigraphy, speech, voice, and facial analysis have proven effective at detecting patients' emotions. On the other hand, these tools are invasive and do not integrate smoothly into the patient's daily life. HRV has also been proven to effectively indicate stress conditions, especially in combination with other signals. However, when HRV is derived from less invasive devices than the ECG, like smartwatches and bracelets, the quality of measurements significantly degrades. This paper presents a methodology for stress detection from a smartwatch based on a universal model for time series, UniTS, which we fine-tuned for the task. We cast the problem as anomaly detection rather than classification to favor model adaptation to individual patients and allow the clinician to maintain greater control over the system's predictions. We demonstrate that our proposed model considerably surpasses 12 top-performing methods on 3 benchmark datasets. Furthermore, unlike other state-of-the-art systems, UniTS enables seamless monitoring, as it shows comparable performance when using signals from invasive or lightweight devices.
Related papers
- Deep Reinforcement Learning Empowered Activity-Aware Dynamic Health
Monitoring Systems [69.41229290253605]
Existing monitoring approaches were designed on the premise that medical devices track several health metrics concurrently.
This means that they report all relevant health values within that scope, which can result in excess resource use and the gathering of extraneous data.
We propose Dynamic Activity-Aware Health Monitoring strategy (DActAHM) for striking a balance between optimal monitoring performance and cost efficiency.
arXiv Detail & Related papers (2024-01-19T16:26:35Z) - VAE-IF: Deep feature extraction with averaging for fully unsupervised artifact detection in routinely acquired ICU time-series [1.9665926763554147]
We propose a novel fully unsupervised approach to detect artifacts in minute-by-minute resolution ICU data without prior labeling or signal-specific knowledge.
Our approach combines a variational autoencoder (VAE) and an isolation forest (IF) into a hybrid model to learn features and identify anomalies.
We show that our unsupervised approach achieves comparable sensitivity to fully supervised methods and generalizes well to an external dataset.
arXiv Detail & Related papers (2023-12-10T18:03:40Z) - Detecting Visual Cues in the Intensive Care Unit and Association with Patient Clinical Status [0.9867627975175174]
Existing patient assessments in the ICU are mostly sporadic and administered manually.
We developed a new "masked loss computation" technique that addresses the data imbalance problem.
We performed AU inference on 634,054 frames to evaluate the association between facial AUs and clinically important patient conditions.
arXiv Detail & Related papers (2023-11-01T15:07:03Z) - Reducing a complex two-sided smartwatch examination for Parkinson's
Disease to an efficient one-sided examination preserving machine learning
accuracy [63.20765930558542]
We have recorded participants performing technology-based assessments in a prospective study to research Parkinson's Disease (PD)
This study provided the largest PD sample size of two-hand synchronous smartwatch measurements.
arXiv Detail & Related papers (2022-05-11T09:12:59Z) - An optimized hybrid solution for IoT based lifestyle disease
classification using stress data [2.3909933791900326]
The proposed novel method employs a test that measures a subject's electrocardiogram (ECG), galvanic skin values (GSV), HRV values, and body movements.
The developed approach is capable of dealing with the class imbalance problem by using WESAD (wearable stress and affect dataset) dataset.
arXiv Detail & Related papers (2022-04-04T05:52:48Z) - PhysioMTL: Personalizing Physiological Patterns using Optimal Transport
Multi-Task Regression [21.254400561280296]
Heart rate variability (HRV) is a practical and noninvasive measure of autonomic nervous system activity.
We develop Physiological Multitask-Learning (PhysioMTL) by harnessing Optimal Transport theory within a Multitask-learning framework.
arXiv Detail & Related papers (2022-03-19T19:14:25Z) - Analysing the Performance of Stress Detection Models on Consumer-Grade
Wearable Devices [9.580380455705397]
Stress levels can provide valuable data for mental health analytics as well as labels for annotation systems.
There is a lack of research on the potential of using low-resolution Electrodermal Activity (EDA) signals from consumer-grade wearable devices to identify stress patterns.
arXiv Detail & Related papers (2022-03-18T00:36:27Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
Parkinsons Disease is a neurological disorder and prevalent in elderly people.
Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests.
We propose a novel time-series based approach to predicting Parkinson's Disease with raw activity test data collected by smartphones in the wild.
arXiv Detail & Related papers (2020-09-25T01:50:15Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.