論文の概要: 10 Years of Fair Representations: Challenges and Opportunities
- arxiv url: http://arxiv.org/abs/2407.03834v1
- Date: Thu, 4 Jul 2024 11:04:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 18:22:43.831982
- Title: 10 Years of Fair Representations: Challenges and Opportunities
- Title(参考訳): 公正表現の10年 : 挑戦と機会
- Authors: Mattia Cerrato, Marius Köppel, Philipp Wolf, Stefan Kramer,
- Abstract要約: 私たちは、Fair Representation Learningの最初の10年間を振り返る。
ディープラーニング理論における最近の研究は、ニューラルネットワーク表現における情報除去の難しさを示している。
自動機械学習(AutoML)を使用して、公正な表現を意図した機密情報を敵対的に“マイニング”する。
- 参考スコア(独自算出の注目度): 4.740449452547712
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fair Representation Learning (FRL) is a broad set of techniques, mostly based on neural networks, that seeks to learn new representations of data in which sensitive or undesired information has been removed. Methodologically, FRL was pioneered by Richard Zemel et al. about ten years ago. The basic concepts, objectives and evaluation strategies for FRL methodologies remain unchanged to this day. In this paper, we look back at the first ten years of FRL by i) revisiting its theoretical standing in light of recent work in deep learning theory that shows the hardness of removing information in neural network representations and ii) presenting the results of a massive experimentation (225.000 model fits and 110.000 AutoML fits) we conducted with the objective of improving on the common evaluation scenario for FRL. More specifically, we use automated machine learning (AutoML) to adversarially "mine" sensitive information from supposedly fair representations. Our theoretical and experimental analysis suggests that deterministic, unquantized FRL methodologies have serious issues in removing sensitive information, which is especially troubling as they might seem "fair" at first glance.
- Abstract(参考訳): Fair Representation Learning(FRL)は、主にニューラルネットワークに基づいて、機密情報や望ましくない情報が削除されたデータの新しい表現を学習しようとする、幅広いテクニックセットである。
FRLはリチャード・ゼメルらによって10年ほど前に開拓された。
FRL方法論の基本概念,目的,評価戦略は,現在でも変わらぬままである。
本稿では,FRLの最初の10年間を振り返る。
一 ニューラルネットワーク表現における情報の除去の難しさを示す深層学習理論の最近の研究を踏まえて、その理論的地位を再考すること。
225.000モデル適合と110.000オートML適合)の結果をFRLの共通評価シナリオの改善を目的として提示した。
より具体的には、自動機械学習(AutoML)を使用して、公正な表現であると思われる機密情報を敵対的に“マイニング”します。
我々の理論的および実験的分析は、決定論的で不定量なFRL法が機密情報の除去に深刻な問題を抱えていることを示唆している。
関連論文リスト
- Back to the Drawing Board for Fair Representation Learning [2.7379431425414684]
フェア表現学習(FRL)手法の評価は,下流のフェアネスと1つのタスクに対する精度のトレードオフに主眼を置いている。
本研究では,この手法がFRLの当初の動機と根本的に一致していないことを論じる。
適切な評価手順が満たすべき4つの基準を満たすベンチマークであるTransFairを提案する。
論文 参考訳(メタデータ) (2024-05-28T13:23:04Z) - Continual Learning with Pre-Trained Models: A Survey [61.97613090666247]
継続的な学習は、新しい知識を学ぶ際に、かつての知識の破滅的な忘れを克服することを目的としている。
本稿では, PTM を用いた CL の最近の進歩を包括的に調査する。
論文 参考訳(メタデータ) (2024-01-29T18:27:52Z) - Towards Poisoning Fair Representations [26.47681999979761]
本研究は、公正表現学習手法を攻撃した最初のデータ中毒フレームワークを提案する。
トレーニングデータに慎重に毒を盛ったサンプルを注入することにより、できるだけ多くの人口統計情報を含む不公平な表現を出力するモデルを誘導する。
ベンチマークフェアネスデータセットと最先端の公正表現学習モデルの実験は、我々の攻撃の優位性を実証している。
論文 参考訳(メタデータ) (2023-09-28T14:51:20Z) - Leveraging Reward Consistency for Interpretable Feature Discovery in
Reinforcement Learning [69.19840497497503]
一般的に使われているアクションマッチングの原理は、RLエージェントの解釈よりもディープニューラルネットワーク(DNN)の説明に近いと論じられている。
本稿では,RLエージェントの主目的である報酬を,RLエージェントを解釈する本質的な目的として考察する。
我々は,Atari 2600 ゲームと,挑戦的な自動運転車シミュレータ環境である Duckietown の検証と評価を行った。
論文 参考訳(メタデータ) (2023-09-04T09:09:54Z) - A Survey on Few-Shot Class-Incremental Learning [11.68962265057818]
FSCIL(Few-shot class-incremental Learning)は、ディープニューラルネットワークが新しいタスクを学習する上で重要な課題である。
本稿では, FSCILに関する包括的調査を行う。
FSCILはコンピュータビジョンの様々な分野で大きな成果を上げている。
論文 参考訳(メタデータ) (2023-04-17T10:15:08Z) - Local Environment Poisoning Attacks on Federated Reinforcement Learning [1.5020330976600738]
フェデレートラーニング(FL)は、従来の強化ラーニング(RL)タスクを解決する一般的なツールとなっている。
フェデレートされたメカニズムは、トレーニングされたポリシーを誤解させる可能性のある悪意のあるエージェントによる毒殺システムを公開する。
本稿では、FRL中毒を最適化問題として特徴付けるための一般的な枠組みを提案し、政策に基づくFRLに適用可能な中毒プロトコルを設計する。
論文 参考訳(メタデータ) (2023-03-05T17:44:23Z) - Agent-Controller Representations: Principled Offline RL with Rich
Exogenous Information [49.06422815335159]
オフラインで収集したデータからエージェントを制御する学習は、実世界の強化学習(RL)の応用にとって不可欠である
本稿では,この問題を研究可能なオフラインRLベンチマークを提案する。
現代の表現学習技術は、ノイズが複雑で時間依存のプロセスであるデータセットで失敗する可能性がある。
論文 参考訳(メタデータ) (2022-10-31T22:12:48Z) - Exploratory State Representation Learning [63.942632088208505]
本稿では,XSRL(eXploratory State Representation Learning)と呼ばれる新しい手法を提案する。
一方、コンパクトな状態表現と、その表現から不可解な情報を除去するために使用される状態遷移推定器を共同で学習する。
一方、逆モデルを継続的に訓練し、このモデルの予測誤差に$k$-stepの学習促進ボーナスを加え、発見ポリシーの目的を形成する。
論文 参考訳(メタデータ) (2021-09-28T10:11:07Z) - Federated Reinforcement Learning: Techniques, Applications, and Open
Challenges [4.749929332500373]
連合強化学習(FRL)は、強化学習(RL)における新興かつ有望な分野である
FRLアルゴリズムは、水平連邦強化学習(HFRL)と垂直連邦強化学習(VFRL)の2つのカテゴリに分けられる。
論文 参考訳(メタデータ) (2021-08-26T16:22:49Z) - Reasoning-Modulated Representations [85.08205744191078]
タスクが純粋に不透明でないような共通的な環境について研究する。
我々のアプローチは、新しいデータ効率表現学習の道を開く。
論文 参考訳(メタデータ) (2021-07-19T13:57:13Z) - Which Mutual-Information Representation Learning Objectives are
Sufficient for Control? [80.2534918595143]
相互情報は、データの表現を学習するために魅力的な形式を提供する。
本稿では,最適政策の学習と表現のための状態表現の十分性について定式化する。
意外なことに、これらの2つの目的は、MDPの構造に関する軽度で一般的な仮定を前提に、不十分な表現をもたらす可能性がある。
論文 参考訳(メタデータ) (2021-06-14T10:12:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。