論文の概要: ADAPT: Multimodal Learning for Detecting Physiological Changes under Missing Modalities
- arxiv url: http://arxiv.org/abs/2407.03836v1
- Date: Thu, 4 Jul 2024 11:05:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 18:22:43.826790
- Title: ADAPT: Multimodal Learning for Detecting Physiological Changes under Missing Modalities
- Title(参考訳): ADAPT: 行方不明者の生理的変化を検出するマルチモーダル学習
- Authors: Julie Mordacq, Leo Milecki, Maria Vakalopoulou, Steve Oudot, Vicky Kalogeiton,
- Abstract要約: 本稿では,AnchoreD MultimodAl Physiological Transformer (ADAPT)を紹介した。
本研究は,2つの実生活シナリオにおける生理的変化を検出することに焦点を当て,特定のトリガーによって誘発される個人におけるストレスと,$g$-forcesによって誘発される意識喪失に焦点を当てた。
- 参考スコア(独自算出の注目度): 5.109460371388953
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodality has recently gained attention in the medical domain, where imaging or video modalities may be integrated with biomedical signals or health records. Yet, two challenges remain: balancing the contributions of modalities, especially in cases with a limited amount of data available, and tackling missing modalities. To address both issues, in this paper, we introduce the AnchoreD multimodAl Physiological Transformer (ADAPT), a multimodal, scalable framework with two key components: (i) aligning all modalities in the space of the strongest, richest modality (called anchor) to learn a joint embedding space, and (ii) a Masked Multimodal Transformer, leveraging both inter- and intra-modality correlations while handling missing modalities. We focus on detecting physiological changes in two real-life scenarios: stress in individuals induced by specific triggers and fighter pilots' loss of consciousness induced by $g$-forces. We validate the generalizability of ADAPT through extensive experiments on two datasets for these tasks, where we set the new state of the art while demonstrating its robustness across various modality scenarios and its high potential for real-life applications.
- Abstract(参考訳): マルチモダリティは、画像やビデオのモダリティをバイオメディカル信号や健康記録と統合する医療分野で最近注目を集めている。
しかし、モダリティのコントリビューションのバランス、特に限られた量のデータがある場合のバランス、欠落したモダリティへの対処の2つの課題が残る。
両問題に対処するため,本稿では,AnchoreD MultimodAl Physiological Transformer (ADAPT)を紹介した。
一 最強で、最も豊かなモダリティ(アンカーと呼ばれる)の空間におけるすべてのモダリティを整列して、共同埋め込み空間を学ぶこと。
(II) モダリティの欠如に対処しつつ, モダリティ間相関とモダリティ内相関を生かしたマルチモーダルトランス。
本研究は,2つの実生活シナリオにおける生理的変化を検出することに焦点を当て,特定のトリガーによって誘発される個人におけるストレスと,$g$-forcesによって誘発される意識喪失に焦点を当てた。
我々は,これらのタスクに対する2つのデータセットに関する広範な実験を通じて,ADAPTの一般化可能性を検証する。
関連論文リスト
- HyperMM : Robust Multimodal Learning with Varying-sized Inputs [4.377889826841039]
HyperMMは、さまざまなサイズの入力で学習するために設計されたエンドツーエンドフレームワークである。
本稿では,条件付きハイパーネットワークを用いたユニバーサル特徴抽出器のトレーニング手法を提案する。
アルツハイマー病の診断と乳癌の分類の2つの課題において,本手法の利点を実験的に実証した。
論文 参考訳(メタデータ) (2024-07-30T12:13:18Z) - MDA: An Interpretable and Scalable Multi-Modal Fusion under Missing Modalities and Intrinsic Noise Conditions [6.612523356335498]
本稿では,マルチモーダル学習の課題に対処するために,モーダル・ドメイン・アテンション(MDA)モデルを提案する。
MDAは、異なるモーダルに対して動的注意を適応的に割り当てる能力により、連続的な注意を通してモーダル間の線形関係を構築する。
以上の結果から,MDAと診断基準が一致していることが示唆された。
論文 参考訳(メタデータ) (2024-06-15T09:08:58Z) - MoME: Mixture of Multimodal Experts for Cancer Survival Prediction [46.520971457396726]
生存分析は、難しい課題として、全体スライド画像(WSI)とゲノムデータを総合的な意思決定のために統合する必要がある。
従来の手法ではコアテンション(co-attention)方式が用いられており、この手法は両方のモダリティから特徴を分離した後にのみ融合する。
符号化と融合を同時に行うBiased Progressive Clever(BPE)パラダイムを提案する。
論文 参考訳(メタデータ) (2024-06-14T03:44:33Z) - Multimodal Fusion on Low-quality Data: A Comprehensive Survey [110.22752954128738]
本稿では,野生におけるマルチモーダル核融合の共通課題と最近の進歩について考察する。
低品質データ上でのマルチモーダル融合で直面する4つの主な課題を同定する。
この新たな分類によって、研究者はフィールドの状態を理解し、いくつかの潜在的な方向を特定することができる。
論文 参考訳(メタデータ) (2024-04-27T07:22:28Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
実世界のアプリケーションでは,音声およびビデオデータに基づくマルチモーダル感情認識が重要である。
近年の手法は、強力なマルチモーダルエンコーダの事前学習に自己教師付き学習(SSL)の進歩を活用することに重点を置いている。
SSL-pre-trained disimodal encoders を用いて,この問題に対する異なる視点とマルチモーダル DFER の性能向上について検討する。
論文 参考訳(メタデータ) (2024-04-13T13:39:26Z) - Joint Multimodal Transformer for Emotion Recognition in the Wild [49.735299182004404]
マルチモーダル感情認識(MMER)システムは、通常、単調なシステムよりも優れている。
本稿では,キーベースのクロスアテンションと融合するために,ジョイントマルチモーダルトランス (JMT) を利用するMMER法を提案する。
論文 参考訳(メタデータ) (2024-03-15T17:23:38Z) - Cross-Attention is Not Enough: Incongruity-Aware Dynamic Hierarchical
Fusion for Multimodal Affect Recognition [69.32305810128994]
モダリティ間の同調性は、特に認知に影響を及ぼすマルチモーダル融合の課題となる。
本稿では,動的モダリティゲーティング(HCT-DMG)を用いた階層型クロスモーダルトランスを提案する。
HCT-DMG: 1) 従来のマルチモーダルモデルを約0.8Mパラメータで上回り、2) 不整合が認識に影響を及ぼすハードサンプルを認識し、3) 潜在レベルの非整合性をクロスモーダルアテンションで緩和する。
論文 参考訳(メタデータ) (2023-05-23T01:24:15Z) - Multi-modal Differentiable Unsupervised Feature Selection [5.314466196448187]
マルチモーダル測定では、両方のモダリティにおける多くの観察された変数は、しばしばニュアンスであり、興味のある現象に関する情報を持っていない。
本稿では,複合高次元計測に基づいて情報変数を同定するマルチモーダルな非教師付き特徴選択フレームワークを提案する。
グラフラプラシアンによって取得された構造の特徴を隠蔽し、精度を高めるため、異なるゲートでスコアを組み込む。
論文 参考訳(メタデータ) (2023-03-16T15:11:17Z) - Efficient Multimodal Transformer with Dual-Level Feature Restoration for
Robust Multimodal Sentiment Analysis [47.29528724322795]
マルチモーダルセンシング分析(MSA)が近年注目を集めている。
著しい進歩にもかかわらず、堅牢なMSAへの道にはまだ2つの大きな課題がある。
デュアルレベル特徴回復 (EMT-DLFR) を用いた高効率マルチモーダル変圧器 (Efficient Multimodal Transformer) を提案する。
論文 参考訳(メタデータ) (2022-08-16T08:02:30Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) は、2対のモダリティ表現で融合を行う新しいエンドツーエンドネットワークである。
モデルは、モダリティ間の既知の情報不均衡により、2つのバイモーダルペアを入力として取る。
論文 参考訳(メタデータ) (2021-07-28T23:33:42Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
画像モダリティの欠如に頑健な新しいマルチモーダルセグメンテーションフレームワークを提案する。
我々のネットワークは、入力モードをモダリティ固有の外観コードに分解するために、特徴不整合を用いる。
我々は,BRATSチャレンジデータセットを用いて,重要なマルチモーダル脳腫瘍セグメンテーション課題に対する本手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-02-22T14:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。