ADAPT: Multimodal Learning for Detecting Physiological Changes under Missing Modalities
- URL: http://arxiv.org/abs/2407.03836v1
- Date: Thu, 4 Jul 2024 11:05:14 GMT
- Title: ADAPT: Multimodal Learning for Detecting Physiological Changes under Missing Modalities
- Authors: Julie Mordacq, Leo Milecki, Maria Vakalopoulou, Steve Oudot, Vicky Kalogeiton,
- Abstract summary: We introduce the AnchoreD multimodAl Physiological Transformer (ADAPT), a multimodal, scalable framework with two key components.
We focus on detecting physiological changes in two real-life scenarios: stress in individuals induced by specific triggers and fighter pilots' loss of consciousness induced by $g$-forces.
- Score: 5.109460371388953
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodality has recently gained attention in the medical domain, where imaging or video modalities may be integrated with biomedical signals or health records. Yet, two challenges remain: balancing the contributions of modalities, especially in cases with a limited amount of data available, and tackling missing modalities. To address both issues, in this paper, we introduce the AnchoreD multimodAl Physiological Transformer (ADAPT), a multimodal, scalable framework with two key components: (i) aligning all modalities in the space of the strongest, richest modality (called anchor) to learn a joint embedding space, and (ii) a Masked Multimodal Transformer, leveraging both inter- and intra-modality correlations while handling missing modalities. We focus on detecting physiological changes in two real-life scenarios: stress in individuals induced by specific triggers and fighter pilots' loss of consciousness induced by $g$-forces. We validate the generalizability of ADAPT through extensive experiments on two datasets for these tasks, where we set the new state of the art while demonstrating its robustness across various modality scenarios and its high potential for real-life applications.
Related papers
- HyperMM : Robust Multimodal Learning with Varying-sized Inputs [4.377889826841039]
HyperMM is an end-to-end framework designed for learning with varying-sized inputs.
We introduce a novel strategy for training a universal feature extractor using a conditional hypernetwork.
We experimentally demonstrate the advantages of our method in two tasks: Alzheimer's disease detection and breast cancer classification.
arXiv Detail & Related papers (2024-07-30T12:13:18Z) - MDA: An Interpretable and Scalable Multi-Modal Fusion under Missing Modalities and Intrinsic Noise Conditions [6.612523356335498]
This paper introduces the Modal-Domain Attention (MDA) model to address the challenges of multi-modal learning.
MDA constructs linear relationships between modalities through continuous attention, due to its ability to adaptively allocate dynamic attention to different modalities.
Our observations on the contribution of different modalities indicate that MDA aligns with established clinical diagnostic imaging gold standards.
arXiv Detail & Related papers (2024-06-15T09:08:58Z) - MoME: Mixture of Multimodal Experts for Cancer Survival Prediction [46.520971457396726]
Survival analysis, as a challenging task, requires integrating Whole Slide Images (WSIs) and genomic data for comprehensive decision-making.
Previous approaches utilize co-attention methods, which fuse features from both modalities only once after separate encoding.
We propose a Biased Progressive Clever (BPE) paradigm, performing encoding and fusion simultaneously.
arXiv Detail & Related papers (2024-06-14T03:44:33Z) - Multimodal Fusion on Low-quality Data: A Comprehensive Survey [110.22752954128738]
This paper surveys the common challenges and recent advances of multimodal fusion in the wild.
We identify four main challenges that are faced by multimodal fusion on low-quality data.
This new taxonomy will enable researchers to understand the state of the field and identify several potential directions.
arXiv Detail & Related papers (2024-04-27T07:22:28Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
Multimodal emotion recognition based on audio and video data is important for real-world applications.
Recent methods have focused on exploiting advances of self-supervised learning (SSL) for pre-training of strong multimodal encoders.
We propose a different perspective on the problem and investigate the advancement of multimodal DFER performance by adapting SSL-pre-trained disjoint unimodal encoders.
arXiv Detail & Related papers (2024-04-13T13:39:26Z) - Joint Multimodal Transformer for Emotion Recognition in the Wild [49.735299182004404]
Multimodal emotion recognition (MMER) systems typically outperform unimodal systems.
This paper proposes an MMER method that relies on a joint multimodal transformer (JMT) for fusion with key-based cross-attention.
arXiv Detail & Related papers (2024-03-15T17:23:38Z) - Cross-Attention is Not Enough: Incongruity-Aware Dynamic Hierarchical
Fusion for Multimodal Affect Recognition [69.32305810128994]
Incongruity between modalities poses a challenge for multimodal fusion, especially in affect recognition.
We propose the Hierarchical Crossmodal Transformer with Dynamic Modality Gating (HCT-DMG), a lightweight incongruity-aware model.
HCT-DMG: 1) outperforms previous multimodal models with a reduced size of approximately 0.8M parameters; 2) recognizes hard samples where incongruity makes affect recognition difficult; 3) mitigates the incongruity at the latent level in crossmodal attention.
arXiv Detail & Related papers (2023-05-23T01:24:15Z) - Multi-modal Differentiable Unsupervised Feature Selection [5.314466196448187]
In multi-modal measurements, many observed variables in both modalities are often nuisance and do not carry information about the phenomenon of interest.
Here, we propose a multi-modal unsupervised feature selection framework: identifying informative variables based on coupled high-dimensional measurements.
We incorporate the scores with differentiable gates that mask nuisance features and enhance the accuracy of the structure captured by the graph Laplacian.
arXiv Detail & Related papers (2023-03-16T15:11:17Z) - Efficient Multimodal Transformer with Dual-Level Feature Restoration for
Robust Multimodal Sentiment Analysis [47.29528724322795]
Multimodal Sentiment Analysis (MSA) has attracted increasing attention recently.
Despite significant progress, there are still two major challenges on the way towards robust MSA.
We propose a generic and unified framework to address them, named Efficient Multimodal Transformer with Dual-Level Feature Restoration (EMT-DLFR)
arXiv Detail & Related papers (2022-08-16T08:02:30Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) is a novel end-to-end network that performs fusion on pairwise modality representations.
Model takes two bimodal pairs as input due to known information imbalance among modalities.
arXiv Detail & Related papers (2021-07-28T23:33:42Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
We propose a novel multimodal segmentation framework which is robust to the absence of imaging modalities.
Our network uses feature disentanglement to decompose the input modalities into the modality-specific appearance code.
We validate our method on the important yet challenging multimodal brain tumor segmentation task with the BRATS challenge dataset.
arXiv Detail & Related papers (2020-02-22T14:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.