Noise analysis of a quasi-phase-matched quantum frequency converter and higher-order counter-propagating SPDC
- URL: http://arxiv.org/abs/2407.03845v2
- Date: Sun, 29 Sep 2024 11:10:46 GMT
- Title: Noise analysis of a quasi-phase-matched quantum frequency converter and higher-order counter-propagating SPDC
- Authors: Felix Mann, Helen M. Chrzanowski, Felipe Gewers, Marlon Placke, Sven Ramelow,
- Abstract summary: Quantum frequency conversion (QFC) will be an indispensable ingredient in future quantum technologies.
Large-scale fibre-based quantum networks will require QFC to interconnect heterogeneous building blocks like emitters, channels, memories and detectors.
The performance of existing QFC devices is often severely limited by parasitic noise that arises when the pump wavelength lies between the inter-converted wavelengths.
- Score: 0.0
- License:
- Abstract: Quantum frequency conversion (QFC) will be an indispensable ingredient in future quantum technologies. For example, large-scale fibre-based quantum networks will require QFC to interconnect heterogeneous building blocks like emitters, channels, memories and detectors. The performance of existing QFC devices - typically realised in periodically-poled nonlinear crystals - is often severely limited by parasitic noise that arises when the pump wavelength lies between the inter-converted wavelengths. Here we comprehensively investigate the noise spectrum of a QFC device pumped by a CW 1064 nm laser. The converter was realised as a bulk periodically-poled potassium titanyl phosphate (ppKTP) crystal quasi-phase-matched for conversion between 637 nm and 1587 nm, which was also polished and coated to resonantly enhance the pump field by a factor of 50. While Raman scattering dominates the noise background from 1140 nm to 1330 nm, at larger energy shifts (beyond 60 THz), parasitic spontaneous parametric down-conversion (SPDC) is the strongest noise source. Further, the noise spectrum was contaminated by a regular succession of narrow-band peaks, which we attribute to a heretofore unidentified higher-order counter-propagating SPDC processes - with quasi-phase-matching orders up to 44 evident in our measurements. This work provides a comprehensive overview of the limiting noise sources in QFC devices that use quasi-phase-matched crystals and will prove an invaluable resource in guiding their future development.
Related papers
- Low-noise quantum frequency conversion with cavity enhancement of converted mode [0.0]
Quantum frequency conversion (QFC) converts the frequencies of photons while preserving the quantum state.
noise photons produced by the strong pump light used for QFC contaminate the frequency-converted photon, which degrades the quality of the quantum property of the photon after QFC.
In this study, we implement a compact QFC device integrating the cavity structure only for the converted mode.
arXiv Detail & Related papers (2024-09-09T08:09:37Z) - Polarization Purity and Dispersion Characteristics of Nested Antiresonant Nodeless Hollow-Core Optical Fiber at Near- and Mid-IR Wavelengths for Quantum Communications [3.9479376216271516]
Hollow core fibers possess unparalleled polarization purity with minimal birefringence in the telecom wavelength range using continuous-wave (CW) laser light.
Our results show a polarization extinction ratio between -30 dB and -70 dB across the 1520 to 1620 nm range in CW operation, peaking at -60 dB at the 2-mum design wavelength.
Our findings highlight the potential of these fibers in emerging applications such as quantum key distribution (QKD) protocols.
arXiv Detail & Related papers (2024-05-05T16:32:28Z) - Quantum interface for telecom frequency conversion based on diamond-type
atomic ensembles [0.0]
We study a quantum frequency conversion (QFC) mechanism using diamond-type four-wave mixing (FWM) with rubidium energy levels.
By employing the reduced-density-operator theory, we demonstrate that this diamond-type FWM scheme maintains quantum characteristics with high fidelity.
This work lays the essential groundwork for advancing the scheme in distributed quantum computing and long-distance quantum communication.
arXiv Detail & Related papers (2024-01-18T07:36:30Z) - Low-noise quantum frequency conversion in a monolithic cavity with bulk
periodically poled potassium titanyl phosphate [0.0]
Nitrogen-vacancy centers in diamond are a leading candidate to form the nodes of a quantum network.
We demonstrate a new platform for efficient low-noise quantum frequency conversion based on a monolithic bulk ppKTP cavity.
By resonantly enhancing the power of an off-the-shelf pump laser, we achieve an internal conversion efficiency of $(72.3pm 0.4)%$ while generating only $(110pm 4) mbox kHz/nm$ noise at the target wavelength.
arXiv Detail & Related papers (2023-04-26T11:32:33Z) - Designing Noise-Robust Quantum Networks Coexisting in the Classical
Fiber Infrastructure [0.0]
coexistence of multi-channel O-band quantum and C-band classical communications.
We characterize multiple narrowband entangled photon pair channels across 1282 nm-1318 nm co-propagating over 48 km installed standard fiber.
We analyze the Raman noise spectrum, optimal wavelength engineering, multi-photon pair emission in entangled photon-classical coexistence, and evaluate the implications for future quantum applications.
arXiv Detail & Related papers (2023-04-18T15:49:38Z) - High-rate sub-GHz linewidth bichromatic entanglement source for quantum
networking [59.191830955730346]
In this work, we study an entanglement source based on four-wave mixing in a diamond configuration in a warm rubidium vapor.
We are able to achieve in-fiber entangled pair generation rates greater than $107, /s$, orders of magnitude higher than previously reported atomic sources.
arXiv Detail & Related papers (2023-04-11T21:19:30Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - Frequency-bin entanglement from domain-engineered down-conversion [101.18253437732933]
We present a single-pass source of discrete frequency-bin entanglement which does not use filtering or a resonant cavity.
We use a domain-engineered nonlinear crystal to generate an eight-mode frequency-bin entangled source at telecommunication wavelengths.
arXiv Detail & Related papers (2022-01-18T19:00:29Z) - Frequency fluctuations of ferromagnetic resonances at milliKelvin
temperatures [50.591267188664666]
Noise is detrimental to device performance, especially for quantum coherent circuits.
Recent efforts have demonstrated routes to utilizing magnon systems for quantum technologies, which are based on single magnons to superconducting qubits.
Researching the temporal behavior can help to identify the underlying noise sources.
arXiv Detail & Related papers (2021-07-14T08:00:37Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z) - Entangled Photon-Pair Sources based on three-wave mixing in bulk
crystals [61.84816391246232]
Entangled photon-pairs are a critical resource in quantum communication protocols ranging from quantum key distribution to teleportation.
The increased prominence of quantum networks has led to growing interest in deployable high performance entangled photon-pair sources.
This manuscript provides a review of the state-of-the-art for bulk-optics-based SPDC sources with continuous wave pump.
arXiv Detail & Related papers (2020-07-30T10:35:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.