Lifetime-limited Gigahertz-frequency Mechanical Oscillators with Millisecond Coherence Times
- URL: http://arxiv.org/abs/2504.07523v2
- Date: Sat, 12 Apr 2025 03:36:37 GMT
- Title: Lifetime-limited Gigahertz-frequency Mechanical Oscillators with Millisecond Coherence Times
- Authors: Yizhi Luo, Hilel Hagai Diamandi, Hanshi Li, Runjiang Bi, David Mason, Taekwan Yoon, Xinghan Guo, Hanlin Tang, Ryan O. Behunin, Frederick J. Walker, Charles Ahn, Peter T. Rakich,
- Abstract summary: Coherence times needed for quantum applications require exquisitely sensitive new techniques to probe the material origins of phonon decoherence.<n>We combine non-invasive laser spectroscopy techniques with materials analysis to identify key sources of phonon decoherence in crystalline media.<n>We identify a path to > 100 ms coherence times as the basis for high-frequency quantum memories.
- Score: 4.2502924738276855
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: High-frequency mechanical oscillators with long coherence times are essential to realizing a variety of high-fidelity quantum sensors, transducers, and memories. However, the unprecedented coherence times needed for quantum applications require exquisitely sensitive new techniques to probe the material origins of phonon decoherence and new strategies to mitigate decoherence in mechanical oscillators. Here, we combine non-invasive laser spectroscopy techniques with materials analysis to identify key sources of phonon decoherence in crystalline media. Using micro-fabricated high-overtone bulk acoustic-wave resonators ($\mu$HBARs) as an experimental testbed, we identify phonon-surface interactions as the dominant source of phonon decoherence in crystalline quartz; lattice distortion, subsurface damage, and high concentration of elemental impurities near the crystal surface are identified as the likely causes. Removal of this compromised surface layer using an optimized polishing process is seen to greatly enhance coherence times, enabling $\mu$HBARs with Q-factors of > 240 million at 12 GHz frequencies, corresponding to > 6 ms phonon coherence times and record-level f-Q products. Complementary phonon linewidth and time-domain ringdown measurements, performed using a new Brillouin-based pump-probe spectroscopy technique, reveal negligible dephasing within these oscillators. Building on these results, we identify a path to > 100 ms coherence times as the basis for high-frequency quantum memories. These findings clearly demonstrate that, with enhanced control over surfaces, dissipation and noise can be significantly reduced in a wide range of quantum systems.
Related papers
- In-situ-tunable spin-spin interactions in a Penning trap with in-bore
optomechanics [41.94295877935867]
We present an optomechanical system for in-situ tuning of the coherent spin-motion and spin-spin interaction strength.
We characterize the system using measurements of the induced mean-field spin precession.
These experiments show approximately a $times2$ variation in the ratio of the coherent to incoherent interaction strength.
arXiv Detail & Related papers (2024-01-31T11:00:39Z) - Spectral Multiplexing of Rare-earth Emitters in a Co-doped Crystalline Membrane [39.58317527488534]
Here, erbium emitters are investigated in a Fabry-Perot resonator which contains a ten-micrometer-thin membrane of crystalline yttrium orthosilicate that is co-doped with europium.
The co-doping allows for tailoring the inhomogeneous distribution of the emitter frequency, which enables high-fidelity spectral multiplexing of more than 360 qubits.
Future work may combine this with long-lived nuclear spin memories, which makes the investigated co-doped membranes a promising platform for quantum repeaters and distributed quantum computers.
arXiv Detail & Related papers (2023-11-28T15:25:03Z) - Strong dispersive coupling between a mechanical resonator and a
fluxonium superconducting qubit [1.3828553628764202]
We extend the reach of circuit quantum acousto-dynamics experiments into a new range of frequencies.
We have engineered a qubit-phonon coupling rate of $gapprox2pitimes14textMHz$, and achieved a dispersive interaction that exceeds the decoherence rates of both systems.
Our results demonstrate the potential for fluxonium-based hybrid quantum systems, and a path for developing new quantum sensing and information processing schemes with phonons at frequencies below 700 MHz.
arXiv Detail & Related papers (2023-04-26T14:33:39Z) - Entanglement-enhanced dual-comb spectroscopy [0.7340017786387767]
Dual-comb interferometry harnesses the interference of two laser frequency combs to provide unprecedented capability in spectroscopy applications.
We propose an entanglement-enhanced dual-comb spectroscopy protocol that leverages quantum resources to significantly improve the signal-to-noise ratio performance.
Our results show significant quantum advantages in the uW to mW power range, making this technique particularly attractive for biological and chemical sensing applications.
arXiv Detail & Related papers (2023-04-04T03:57:53Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Ultra-High Q Nanomechanical Resonators for Force Sensing [91.3755431537592]
I propose that such resonators will allow the detection of electron and nuclear spins with high spatial resolution.
The article lists the challenges that must be overcome before this vision can become reality, and indicates potential solutions.
arXiv Detail & Related papers (2022-09-12T12:21:00Z) - Large Single-Phonon Optomechanical Coupling between Quantum Dots and
Tightly Confined Surface Acoustic Waves in the Quantum Regime [1.7039969990048311]
Small acoustic cavities with large zero-point motion are required for high efficiencies.
We experimentally establish the feasibility of this platform through electro- and opto-mechanical characterization.
We show conversion between microwave phonons and optical photons with sub-natural linewidths.
arXiv Detail & Related papers (2022-05-03T02:53:01Z) - Frequency fluctuations of ferromagnetic resonances at milliKelvin
temperatures [50.591267188664666]
Noise is detrimental to device performance, especially for quantum coherent circuits.
Recent efforts have demonstrated routes to utilizing magnon systems for quantum technologies, which are based on single magnons to superconducting qubits.
Researching the temporal behavior can help to identify the underlying noise sources.
arXiv Detail & Related papers (2021-07-14T08:00:37Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Fast high-fidelity single-qubit gates for flip-flop qubits in silicon [68.8204255655161]
flip-flop qubit is encoded in the states with antiparallel donor-bound electron and donor nuclear spins in silicon.
We study the multilevel system that is formed by the interacting electron and nuclear spins.
We propose an optimal control scheme that produces fast and robust single-qubit gates in the presence of low-frequency noise.
arXiv Detail & Related papers (2021-01-27T18:37:30Z) - Measurements of a quantum bulk acoustic resonator using a
superconducting qubit [0.0]
Phonons hold promise for quantum-focused applications as diverse as sensing, information processing, and communication.
We describe a piezoelectric quantum bulk acoustic resonator (QBAR) with a 4.88 GHz resonant frequency.
We couple this QBAR resonator to a superconducting qubit on a separate die and demonstrate quantum control of the mechanics in the coupled system.
arXiv Detail & Related papers (2020-12-08T17:36:33Z) - Hyper Ramsey-Bord\'e matter-wave interferometry for robust quantum
sensors [0.0]
A new generation of atomic sensors using ultra-narrow optical clock transitions and composite pulses are pushing quantum engineering control to a very high level of precision.
We propose a new version of Ramsey-Bord'e interferometry introducing arbitrary composite laser pulses with tailored pulse duration, Rabi field, detuning and phase-steps.
We present, for the first time, new developments for robust hyper Ramsey-Bord'e and Mach-Zehnder interferometers.
arXiv Detail & Related papers (2020-12-07T17:47:28Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z) - Frequency Multiplexed Optical Entangled Source based on the Pockels
Effect [0.0]
I study the generation of entangled optical frequency combs in mm-sized resonant electro-optic modulators.
These devices profit from the experimentally proven advantages such as nearly constant optical free spectral ranges over several gigahertz.
arXiv Detail & Related papers (2020-10-11T22:07:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.