The Solution for the GAIIC2024 RGB-TIR object detection Challenge
- URL: http://arxiv.org/abs/2407.03872v1
- Date: Thu, 4 Jul 2024 12:08:36 GMT
- Title: The Solution for the GAIIC2024 RGB-TIR object detection Challenge
- Authors: Xiangyu Wu, Jinling Xu, Longfei Huang, Yang Yang,
- Abstract summary: RGB-TIR object detection aims to utilize both RGB and TIR images for complementary information during detection.
Our proposed method achieved an mAP score of 0.516 and 0.543 on A and B benchmarks respectively.
- Score: 5.625794757504552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This report introduces a solution to The task of RGB-TIR object detection from the perspective of unmanned aerial vehicles. Unlike traditional object detection methods, RGB-TIR object detection aims to utilize both RGB and TIR images for complementary information during detection. The challenges of RGB-TIR object detection from the perspective of unmanned aerial vehicles include highly complex image backgrounds, frequent changes in lighting, and uncalibrated RGB-TIR image pairs. To address these challenges at the model level, we utilized a lightweight YOLOv9 model with extended multi-level auxiliary branches that enhance the model's robustness, making it more suitable for practical applications in unmanned aerial vehicle scenarios. For image fusion in RGB-TIR detection, we incorporated a fusion module into the backbone network to fuse images at the feature level, implicitly addressing calibration issues. Our proposed method achieved an mAP score of 0.516 and 0.543 on A and B benchmarks respectively while maintaining the highest inference speed among all models.
Related papers
- Removal then Selection: A Coarse-to-Fine Fusion Perspective for RGB-Infrared Object Detection [20.12812979315803]
Object detection utilizing both visible (RGB) and thermal infrared (IR) imagery has garnered extensive attention.
Most existing multi-modal object detection methods directly input the RGB and IR images into deep neural networks.
We propose a novel coarse-to-fine perspective to purify and fuse features from both modalities.
arXiv Detail & Related papers (2024-01-19T14:49:42Z) - $\mathbf{C}^2$Former: Calibrated and Complementary Transformer for
RGB-Infrared Object Detection [18.27510863075184]
We propose a novel Calibrated and Complementary Transformer called $mathrmC2$Former to address modality miscalibration and imprecision problems.
Because $mathrmC2$Former performs in the feature domain, it can be embedded into existed RGB-IR object detectors via the backbone network.
arXiv Detail & Related papers (2023-06-28T12:52:48Z) - Symmetric Uncertainty-Aware Feature Transmission for Depth
Super-Resolution [52.582632746409665]
We propose a novel Symmetric Uncertainty-aware Feature Transmission (SUFT) for color-guided DSR.
Our method achieves superior performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-06-01T06:35:59Z) - Assessing thermal imagery integration into object detection methods on
ground-based and air-based collection platforms [0.0]
fusing RGB with thermal long wave infrared (LWIR) images to increase the performance of object detection machine learning (ML) models.
Ground-based blended RGB-LWIR model exhibited superior performance compared to the RGB or LWIR approaches, achieving a mAP of 98.4%.
This research additionally contributes a novel labelled training dataset of 12,600 images for RGB, LWIR, and RGB-LWIR fused imagery, collected from ground-based and air-based platforms.
arXiv Detail & Related papers (2022-12-23T23:51:53Z) - Does Thermal Really Always Matter for RGB-T Salient Object Detection? [153.17156598262656]
This paper proposes a network named TNet to solve the RGB-T salient object detection (SOD) task.
In this paper, we introduce a global illumination estimation module to predict the global illuminance score of the image.
On the other hand, we introduce a two-stage localization and complementation module in the decoding phase to transfer object localization cue and internal integrity cue in thermal features to the RGB modality.
arXiv Detail & Related papers (2022-10-09T13:50:12Z) - Translation, Scale and Rotation: Cross-Modal Alignment Meets
RGB-Infrared Vehicle Detection [10.460296317901662]
We find detection in aerial RGB-IR images suffers from cross-modal weakly misalignment problems.
We propose a Translation-Scale-Rotation Alignment (TSRA) module to address the problem.
A two-stream feature alignment detector (TSFADet) based on the TSRA module is constructed for RGB-IR object detection in aerial images.
arXiv Detail & Related papers (2022-09-28T03:06:18Z) - Mirror Complementary Transformer Network for RGB-thermal Salient Object
Detection [16.64781797503128]
RGB-thermal object detection (RGB-T SOD) aims to locate the common prominent objects of an aligned visible and thermal infrared image pair.
In this paper, we propose a novel mirror complementary Transformer network (MCNet) for RGB-T SOD.
Experiments on benchmark and VT723 datasets show that the proposed method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2022-07-07T20:26:09Z) - Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images [89.81919625224103]
Training deep models for RGB-D salient object detection (SOD) often requires a large number of labeled RGB-D images.
We present a Dual-Semi RGB-D Salient Object Detection Network (DS-Net) to leverage unlabeled RGB images for boosting RGB-D saliency detection.
arXiv Detail & Related papers (2022-01-01T03:02:27Z) - Learning Selective Mutual Attention and Contrast for RGB-D Saliency
Detection [145.4919781325014]
How to effectively fuse cross-modal information is the key problem for RGB-D salient object detection.
Many models use the feature fusion strategy but are limited by the low-order point-to-point fusion methods.
We propose a novel mutual attention model by fusing attention and contexts from different modalities.
arXiv Detail & Related papers (2020-10-12T08:50:10Z) - Cross-Modal Weighting Network for RGB-D Salient Object Detection [76.0965123893641]
We propose a novel Cross-Modal Weighting (CMW) strategy to encourage comprehensive interactions between RGB and depth channels for RGB-D SOD.
Specifically, three RGB-depth interaction modules, named CMW-L, CMW-M and CMW-H, are developed to deal with respectively low-, middle- and high-level cross-modal information fusion.
CMWNet consistently outperforms 15 state-of-the-art RGB-D SOD methods on seven popular benchmarks.
arXiv Detail & Related papers (2020-07-09T16:01:44Z) - Drone-based RGB-Infrared Cross-Modality Vehicle Detection via
Uncertainty-Aware Learning [59.19469551774703]
Drone-based vehicle detection aims at finding the vehicle locations and categories in an aerial image.
We construct a large-scale drone-based RGB-Infrared vehicle detection dataset, termed DroneVehicle.
Our DroneVehicle collects 28, 439 RGB-Infrared image pairs, covering urban roads, residential areas, parking lots, and other scenarios from day to night.
arXiv Detail & Related papers (2020-03-05T05:29:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.