Perception-Guided Quality Metric of 3D Point Clouds Using Hybrid Strategy
- URL: http://arxiv.org/abs/2407.03885v2
- Date: Fri, 27 Sep 2024 05:58:13 GMT
- Title: Perception-Guided Quality Metric of 3D Point Clouds Using Hybrid Strategy
- Authors: Yujie Zhang, Qi Yang, Yiling Xu, Shan Liu,
- Abstract summary: Full-reference point cloud quality assessment (FR-PCQA) aims to infer the quality of distorted point clouds with available references.
Most of the existing FR-PCQA metrics ignore the fact that the human visual system (HVS) dynamically tackles visual information according to different distortion levels.
We propose a perception-guided hybrid metric (PHM) that adaptively leverages two visual strategies with respect to distortion degree to predict point cloud quality.
- Score: 38.942691194229724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Full-reference point cloud quality assessment (FR-PCQA) aims to infer the quality of distorted point clouds with available references. Most of the existing FR-PCQA metrics ignore the fact that the human visual system (HVS) dynamically tackles visual information according to different distortion levels (i.e., distortion detection for high-quality samples and appearance perception for low-quality samples) and measure point cloud quality using unified features. To bridge the gap, in this paper, we propose a perception-guided hybrid metric (PHM) that adaptively leverages two visual strategies with respect to distortion degree to predict point cloud quality: to measure visible difference in high-quality samples, PHM takes into account the masking effect and employs texture complexity as an effective compensatory factor for absolute difference; on the other hand, PHM leverages spectral graph theory to evaluate appearance degradation in low-quality samples. Variations in geometric signals on graphs and changes in the spectral graph wavelet coefficients are utilized to characterize geometry and texture appearance degradation, respectively. Finally, the results obtained from the two components are combined in a non-linear method to produce an overall quality score of the tested point cloud. The results of the experiment on five independent databases show that PHM achieves state-of-the-art (SOTA) performance and offers significant performance improvement in multiple distortion environments. The code is publicly available at https://github.com/zhangyujie-1998/PHM.
Related papers
- No-Reference Point Cloud Quality Assessment via Graph Convolutional Network [89.12589881881082]
Three-dimensional (3D) point cloud, as an emerging visual media format, is increasingly favored by consumers.
Point clouds inevitably suffer from quality degradation and information loss through multimedia communication systems.
We propose a novel no-reference PCQA method by using a graph convolutional network (GCN) to characterize the mutual dependencies of multi-view 2D projected image contents.
arXiv Detail & Related papers (2024-11-12T11:39:05Z) - Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment [49.36799270585947]
No-reference point cloud quality assessment (NR-PCQA) aims to automatically evaluate the perceptual quality of distorted point clouds without available reference.
We propose a novel contrastive pre-training framework tailored for PCQA (CoPA)
Our method outperforms the state-of-the-art PCQA methods on popular benchmarks.
arXiv Detail & Related papers (2024-03-15T07:16:07Z) - Simple Baselines for Projection-based Full-reference and No-reference
Point Cloud Quality Assessment [60.2709006613171]
We propose simple baselines for projection-based point cloud quality assessment (PCQA)
We use multi-projections obtained via a common cube-like projection process from the point clouds for both full-reference (FR) and no-reference (NR) PCQA tasks.
Taking part in the ICIP 2023 PCVQA Challenge, we succeeded in achieving the top spot in four out of the five competition tracks.
arXiv Detail & Related papers (2023-10-26T04:42:57Z) - Reduced-Reference Quality Assessment of Point Clouds via
Content-Oriented Saliency Projection [17.983188216548005]
Many dense 3D point clouds have been exploited to represent visual objects instead of traditional images or videos.
We propose a novel and efficient Reduced-Reference quality metric for point clouds.
arXiv Detail & Related papers (2023-01-18T18:00:29Z) - TCDM: Transformational Complexity Based Distortion Metric for Perceptual
Point Cloud Quality Assessment [24.936061591860838]
The goal of objective point cloud quality assessment (PCQA) research is to develop metrics that measure point cloud quality in a consistent manner.
We evaluate the point cloud quality by measuring the complexity of transforming the distorted point cloud back to its reference.
The effectiveness of the proposed transformational complexity based distortion metric (TCDM) is evaluated through extensive experiments conducted on five public point cloud quality assessment databases.
arXiv Detail & Related papers (2022-10-10T13:20:51Z) - MM-PCQA: Multi-Modal Learning for No-reference Point Cloud Quality
Assessment [32.495387943305204]
We propose a novel no-reference point cloud quality assessment (NR-PCQA) metric in a multi-modal fashion.
In specific, we split the point clouds into sub-models to represent local geometry distortions such as point shift and down-sampling.
To achieve the goals, the sub-models and projected images are encoded with point-based and image-based neural networks.
arXiv Detail & Related papers (2022-09-01T06:11:12Z) - Blind Quality Assessment of 3D Dense Point Clouds with Structure Guided
Resampling [71.68672977990403]
We propose an objective point cloud quality index with Structure Guided Resampling (SGR) to automatically evaluate the perceptually visual quality of 3D dense point clouds.
The proposed SGR is a general-purpose blind quality assessment method without the assistance of any reference information.
arXiv Detail & Related papers (2022-08-31T02:42:55Z) - Reduced Reference Perceptual Quality Model and Application to Rate
Control for 3D Point Cloud Compression [61.110938359555895]
In rate-distortion optimization, the encoder settings are determined by maximizing a reconstruction quality measure subject to a constraint on the bit rate.
We propose a linear perceptual quality model whose variables are the V-PCC geometry and color quantization parameters.
Subjective quality tests with 400 compressed 3D point clouds show that the proposed model correlates well with the mean opinion score.
We show that for the same target bit rate, ratedistortion optimization based on the proposed model offers higher perceptual quality than rate-distortion optimization based on exhaustive search with a point-to-point objective quality metric.
arXiv Detail & Related papers (2020-11-25T12:42:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.