Reduced-Reference Quality Assessment of Point Clouds via
Content-Oriented Saliency Projection
- URL: http://arxiv.org/abs/2301.07681v1
- Date: Wed, 18 Jan 2023 18:00:29 GMT
- Title: Reduced-Reference Quality Assessment of Point Clouds via
Content-Oriented Saliency Projection
- Authors: Wei Zhou, Guanghui Yue, Ruizeng Zhang, Yipeng Qin, Hantao Liu
- Abstract summary: Many dense 3D point clouds have been exploited to represent visual objects instead of traditional images or videos.
We propose a novel and efficient Reduced-Reference quality metric for point clouds.
- Score: 17.983188216548005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many dense 3D point clouds have been exploited to represent visual objects
instead of traditional images or videos. To evaluate the perceptual quality of
various point clouds, in this letter, we propose a novel and efficient
Reduced-Reference quality metric for point clouds, which is based on
Content-oriented sAliency Projection (RR-CAP). Specifically, we make the first
attempt to simplify reference and distorted point clouds into projected
saliency maps with a downsampling operation. Through this process, we tackle
the issue of transmitting large-volume original point clouds to user-ends for
quality assessment. Then, motivated by the characteristics of the human visual
system (HVS), the objective quality scores of distorted point clouds are
produced by combining content-oriented similarity and statistical correlation
measurements. Finally, extensive experiments are conducted on SJTU-PCQA and WPC
databases. The experimental results demonstrate that our proposed algorithm
outperforms existing reduced-reference and no-reference quality metrics, and
significantly reduces the performance gap between state-of-the-art
full-reference quality assessment methods. In addition, we show the performance
variation of each proposed technical component by ablation tests.
Related papers
- Perception-Guided Quality Metric of 3D Point Clouds Using Hybrid Strategy [38.942691194229724]
Full-reference point cloud quality assessment (FR-PCQA) aims to infer the quality of distorted point clouds with available references.
Most of the existing FR-PCQA metrics ignore the fact that the human visual system (HVS) dynamically tackles visual information according to different distortion levels.
We propose a perception-guided hybrid metric (PHM) that adaptively leverages two visual strategies with respect to distortion degree to predict point cloud quality.
arXiv Detail & Related papers (2024-07-04T12:23:39Z) - Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment [49.36799270585947]
No-reference point cloud quality assessment (NR-PCQA) aims to automatically evaluate the perceptual quality of distorted point clouds without available reference.
We propose a novel contrastive pre-training framework tailored for PCQA (CoPA)
Our method outperforms the state-of-the-art PCQA methods on popular benchmarks.
arXiv Detail & Related papers (2024-03-15T07:16:07Z) - Simple Baselines for Projection-based Full-reference and No-reference
Point Cloud Quality Assessment [60.2709006613171]
We propose simple baselines for projection-based point cloud quality assessment (PCQA)
We use multi-projections obtained via a common cube-like projection process from the point clouds for both full-reference (FR) and no-reference (NR) PCQA tasks.
Taking part in the ICIP 2023 PCVQA Challenge, we succeeded in achieving the top spot in four out of the five competition tracks.
arXiv Detail & Related papers (2023-10-26T04:42:57Z) - Gap-closing Matters: Perceptual Quality Evaluation and Optimization of Low-Light Image Enhancement [55.8106019031768]
There is a growing consensus in the research community that the optimization of low-light image enhancement approaches should be guided by the visual quality perceived by end users.
We propose a gap-closing framework for assessing subjective and objective quality systematically.
We validate the effectiveness of our proposed framework through both the accuracy of quality prediction and the perceptual quality of image enhancement.
arXiv Detail & Related papers (2023-02-22T15:57:03Z) - TCDM: Transformational Complexity Based Distortion Metric for Perceptual
Point Cloud Quality Assessment [24.936061591860838]
The goal of objective point cloud quality assessment (PCQA) research is to develop metrics that measure point cloud quality in a consistent manner.
We evaluate the point cloud quality by measuring the complexity of transforming the distorted point cloud back to its reference.
The effectiveness of the proposed transformational complexity based distortion metric (TCDM) is evaluated through extensive experiments conducted on five public point cloud quality assessment databases.
arXiv Detail & Related papers (2022-10-10T13:20:51Z) - Blind Quality Assessment of 3D Dense Point Clouds with Structure Guided
Resampling [71.68672977990403]
We propose an objective point cloud quality index with Structure Guided Resampling (SGR) to automatically evaluate the perceptually visual quality of 3D dense point clouds.
The proposed SGR is a general-purpose blind quality assessment method without the assistance of any reference information.
arXiv Detail & Related papers (2022-08-31T02:42:55Z) - Evaluating Point Cloud from Moving Camera Videos: A No-Reference Metric [58.309735075960745]
This paper explores the way of dealing with point cloud quality assessment (PCQA) tasks via video quality assessment (VQA) methods.
We generate the captured videos by rotating the camera around the point clouds through several circular pathways.
We extract both spatial and temporal quality-aware features from the selected key frames and the video clips through using trainable 2D-CNN and pre-trained 3D-CNN models.
arXiv Detail & Related papers (2022-08-30T08:59:41Z) - No-Reference Point Cloud Quality Assessment via Domain Adaptation [31.280188860021248]
We present a novel no-reference quality assessment metric, the image transferred point cloud quality assessment (IT-PCQA) for 3D point clouds.
In particular, we treat natural images as the source domain and point clouds as the target domain, and infer point cloud quality via unsupervised adversarial domain adaptation.
Experimental results show that the proposed method can achieve higher performance than traditional no-reference metrics, even comparable results with full-reference metrics.
arXiv Detail & Related papers (2021-12-06T08:20:40Z) - Reduced Reference Perceptual Quality Model and Application to Rate
Control for 3D Point Cloud Compression [61.110938359555895]
In rate-distortion optimization, the encoder settings are determined by maximizing a reconstruction quality measure subject to a constraint on the bit rate.
We propose a linear perceptual quality model whose variables are the V-PCC geometry and color quantization parameters.
Subjective quality tests with 400 compressed 3D point clouds show that the proposed model correlates well with the mean opinion score.
We show that for the same target bit rate, ratedistortion optimization based on the proposed model offers higher perceptual quality than rate-distortion optimization based on exhaustive search with a point-to-point objective quality metric.
arXiv Detail & Related papers (2020-11-25T12:42:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.