Timestep-Aware Correction for Quantized Diffusion Models
- URL: http://arxiv.org/abs/2407.03917v1
- Date: Thu, 4 Jul 2024 13:22:31 GMT
- Title: Timestep-Aware Correction for Quantized Diffusion Models
- Authors: Yuzhe Yao, Feng Tian, Jun Chen, Haonan Lin, Guang Dai, Yong Liu, Jingdong Wang,
- Abstract summary: We propose a timestep-aware correction method for quantized diffusion model, which dynamically corrects the quantization error.
By leveraging the proposed method in low-precision diffusion models, substantial enhancement of output quality could be achieved with only negligible overhead.
- Score: 28.265582848911574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have marked a significant breakthrough in the synthesis of semantically coherent images. However, their extensive noise estimation networks and the iterative generation process limit their wider application, particularly on resource-constrained platforms like mobile devices. Existing post-training quantization (PTQ) methods have managed to compress diffusion models to low precision. Nevertheless, due to the iterative nature of diffusion models, quantization errors tend to accumulate throughout the generation process. This accumulation of error becomes particularly problematic in low-precision scenarios, leading to significant distortions in the generated images. We attribute this accumulation issue to two main causes: error propagation and exposure bias. To address these problems, we propose a timestep-aware correction method for quantized diffusion model, which dynamically corrects the quantization error. By leveraging the proposed method in low-precision diffusion models, substantial enhancement of output quality could be achieved with only negligible computation overhead. Extensive experiments underscore our method's effectiveness and generalizability. By employing the proposed correction strategy, we achieve state-of-the-art (SOTA) results on low-precision models.
Related papers
- Lossy Image Compression with Foundation Diffusion Models [10.407650300093923]
In this work we formulate the removal of quantization error as a denoising task, using diffusion to recover lost information in the transmitted image latent.
Our approach allows us to perform less than 10% of the full diffusion generative process and requires no architectural changes to the diffusion model.
arXiv Detail & Related papers (2024-04-12T16:23:42Z) - QuEST: Low-bit Diffusion Model Quantization via Efficient Selective Finetuning [52.157939524815866]
In this paper, we empirically unravel three properties in quantized diffusion models that compromise the efficacy of current methods.
We identify two critical types of quantized layers: those holding vital temporal information and those sensitive to reduced bit-width.
Our method is evaluated over three high-resolution image generation tasks and achieves state-of-the-art performance under various bit-width settings.
arXiv Detail & Related papers (2024-02-06T03:39:44Z) - EDA-DM: Enhanced Distribution Alignment for Post-Training Quantization of Diffusion Models [4.21216544443537]
Quantization can effectively reduce model complexity, and post-training quantization (PTQ) is highly promising for compressing and accelerating diffusion models.
Existing PTQ methods for diffusion models suffer from distribution mismatch issues at both calibration sample level and reconstruction output level.
We propose Enhanced Distribution Alignment for Post-Training Quantization of Diffusion Models (EDA-DM) to address the above issues.
arXiv Detail & Related papers (2024-01-09T14:42:49Z) - Post-training Quantization for Text-to-Image Diffusion Models with Progressive Calibration and Activation Relaxing [49.800746112114375]
We propose a novel post-training quantization method (Progressive and Relaxing) for text-to-image diffusion models.
We are the first to achieve quantization for Stable Diffusion XL while maintaining the performance.
arXiv Detail & Related papers (2023-11-10T09:10:09Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Towards Accurate Post-training Quantization for Diffusion Models [73.19871905102545]
We propose an accurate data-free post-training quantization framework of diffusion models (ADP-DM) for efficient image generation.
Our method outperforms the state-of-the-art post-training quantization of diffusion model by a sizable margin with similar computational cost.
arXiv Detail & Related papers (2023-05-30T04:00:35Z) - Q-Diffusion: Quantizing Diffusion Models [52.978047249670276]
Post-training quantization (PTQ) is considered a go-to compression method for other tasks.
We propose a novel PTQ method specifically tailored towards the unique multi-timestep pipeline and model architecture.
We show that our proposed method is able to quantize full-precision unconditional diffusion models into 4-bit while maintaining comparable performance.
arXiv Detail & Related papers (2023-02-08T19:38:59Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.