Uncertainty-Guided Optimization on Large Language Model Search Trees
- URL: http://arxiv.org/abs/2407.03951v1
- Date: Thu, 4 Jul 2024 14:08:50 GMT
- Title: Uncertainty-Guided Optimization on Large Language Model Search Trees
- Authors: Julia Grosse, Ruotian Wu, Ahmad Rashid, Philipp Hennig, Pascal Poupart, Agustinus Kristiadi,
- Abstract summary: Beam search is a standard tree search algorithm when it comes to finding sequences of maximum likelihood.
We propose a non-myopic Bayesian-optimization-like acquisition function that allows for a more data-efficient exploration scheme.
Our method achieves the same or a higher likelihood while expanding fewer nodes than beam search.
- Score: 42.71167208999792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Beam search is a standard tree search algorithm when it comes to finding sequences of maximum likelihood, for example, in the decoding processes of large language models. However, it is myopic since it does not take the whole path from the root to a leaf into account. Moreover, it is agnostic to prior knowledge available about the process: For example, it does not consider that the objective being maximized is a likelihood and thereby has specific properties, like being bound in the unit interval. Taking a probabilistic approach, we define a prior belief over the LLMs' transition probabilities and obtain a posterior belief over the most promising paths in each iteration. These beliefs are helpful to define a non-myopic Bayesian-optimization-like acquisition function that allows for a more data-efficient exploration scheme than standard beam search. We discuss how to select the prior and demonstrate in on- and off-model experiments with recent large language models, including Llama-2-7b, that our method achieves higher efficiency than beam search: Our method achieves the same or a higher likelihood while expanding fewer nodes than beam search.
Related papers
- LLM-First Search: Self-Guided Exploration of the Solution Space [29.780554400938335]
Large Language Models (LLMs) have demonstrated remarkable improvements in reasoning and planning through increased test-time compute.<n>We propose textbfLLM-First Search (LFS), a novel textitLLM Self-Guided Search method.
arXiv Detail & Related papers (2025-06-05T16:27:49Z) - Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
Large language models (LLMs) have been widely integrated into information retrieval to advance traditional techniques.<n>We propose EXSEARCH, an agentic search framework, where the LLM learns to retrieve useful information as the reasoning unfolds.<n>Experiments on four knowledge-intensive benchmarks show that EXSEARCH substantially outperforms baselines.
arXiv Detail & Related papers (2025-05-26T15:27:55Z) - Visualising Policy-Reward Interplay to Inform Zeroth-Order Preference Optimisation of Large Language Models [0.36326779753373206]
Zeroth-Order (ZO) optimisation, using function evaluations instead of gradients, reduces memory usage but suffers from slow convergence in high-dimensional models.
We introduce ZOPrO, a novel ZO algorithm designed for Preference optimisation in LLMs.
We demonstrate that our method consistently enhances reward signals while achieving convergence times comparable to first-order methods.
arXiv Detail & Related papers (2025-03-05T12:49:48Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs.
We perform objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention.
Experiments demonstrate the state-of-the-art performance of DiscoPOP, a novel algorithm that adaptively blends logistic and exponential losses.
arXiv Detail & Related papers (2024-06-12T16:58:41Z) - Latent Logic Tree Extraction for Event Sequence Explanation from LLMs [19.90330712436838]
Modern high-stakes systems, such as healthcare or robotics, often generate vast streaming event sequences.
Our goal is to design an efficient, plug-and-play tool to elicit logic tree-based explanations from Large Language Models (LLMs) to provide customized insights into each observed event sequence.
In the online setting, our locally built, lightweight model will iteratively extract the most relevant rules from LLMs for each sequence using only a few iterations.
arXiv Detail & Related papers (2024-06-03T09:10:42Z) - Autonomous Tree-search Ability of Large Language Models [58.68735916408101]
Large Language Models have excelled in remarkable reasoning capabilities with advanced prompting techniques.
Recent works propose to utilize external programs to define search logic, such that LLMs can perform passive tree search to solve more challenging reasoning tasks.
We propose a new concept called autonomous tree-search ability of LLM, which can automatically generate a response containing search trajectories for the correct answer.
arXiv Detail & Related papers (2023-10-14T14:14:38Z) - Alphazero-like Tree-Search can Guide Large Language Model Decoding and
Training [37.79247073276239]
Recent works like Tree-of-Thought (ToT) and Reasoning via Planning (RAP) aim to augment the reasoning capabilities of LLMs.
We present an AlphaZero-like tree-search learning framework for LLMs (termed TS-LLM)
We show how tree-search with a learned value function can guide LLM decoding.
arXiv Detail & Related papers (2023-09-29T12:20:19Z) - Algorithm of Thoughts: Enhancing Exploration of Ideas in Large Language Models [17.059322033670124]
We propose a novel strategy that propels Large Language Models through algorithmic reasoning pathways.
Our results suggest that instructing an LLM using an algorithm can lead to performance surpassing that of the algorithm itself.
arXiv Detail & Related papers (2023-08-20T22:36:23Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
We present the first efficient scalable and general framework that can directly search on the tasks of interest.
Inspired by the innate tree structure of the underlying math expressions, we re-arrange the spaces into a super-tree.
We adopt an adaptation of the Monte Carlo method to tree search, equipped with rejection sampling and equivalent- form detection.
arXiv Detail & Related papers (2022-09-27T17:51:31Z) - Local policy search with Bayesian optimization [73.0364959221845]
Reinforcement learning aims to find an optimal policy by interaction with an environment.
Policy gradients for local search are often obtained from random perturbations.
We develop an algorithm utilizing a probabilistic model of the objective function and its gradient.
arXiv Detail & Related papers (2021-06-22T16:07:02Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.