Efficient Exploration in Binary and Preferential Bayesian Optimization
- URL: http://arxiv.org/abs/2110.09361v1
- Date: Mon, 18 Oct 2021 14:44:34 GMT
- Title: Efficient Exploration in Binary and Preferential Bayesian Optimization
- Authors: Tristan Fauvel and Matthew Chalk
- Abstract summary: We show that it is important for BO algorithms to distinguish between different types of uncertainty.
We propose several new acquisition functions that outperform state-of-the-art BO functions.
- Score: 0.5076419064097732
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian optimization (BO) is an effective approach to optimize expensive
black-box functions, that seeks to trade-off between exploitation (selecting
parameters where the maximum is likely) and exploration (selecting parameters
where we are uncertain about the objective function). In many real-world
situations, direct measurements of the objective function are not possible, and
only binary measurements such as success/failure or pairwise comparisons are
available. To perform efficient exploration in this setting, we show that it is
important for BO algorithms to distinguish between different types of
uncertainty: epistemic uncertainty, about the unknown objective function, and
aleatoric uncertainty, which comes from noisy observations and cannot be
reduced. In effect, only the former is important for efficient exploration.
Based on this, we propose several new acquisition functions that outperform
state-of-the-art heuristics in binary and preferential BO, while being fast to
compute and easy to implement. We then generalize these acquisition rules to
batch learning, where multiple queries are performed simultaneously.
Related papers
- Poisson Process for Bayesian Optimization [126.51200593377739]
We propose a ranking-based surrogate model based on the Poisson process and introduce an efficient BO framework, namely Poisson Process Bayesian Optimization (PoPBO)
Compared to the classic GP-BO method, our PoPBO has lower costs and better robustness to noise, which is verified by abundant experiments.
arXiv Detail & Related papers (2024-02-05T02:54:50Z) - Mastering the exploration-exploitation trade-off in Bayesian
Optimization [0.2538209532048867]
The acquisition function drives the choice of the next solution to evaluate, balancing between exploration and exploitation.
This paper proposes a novel acquisition function, mastering the trade-off between explorative and exploitative choices, adaptively.
arXiv Detail & Related papers (2023-05-15T13:19:03Z) - Experience in Engineering Complex Systems: Active Preference Learning
with Multiple Outcomes and Certainty Levels [1.5257326975704795]
Black-box optimization refers to the problem whose objective function and/or constraint sets are either unknown, inaccessible, or non-existent.
The algorithm so-called Active Preference Learning has been developed to exploit this specific information.
Our approach aims to extend the algorithm in such a way that can exploit further information effectively.
arXiv Detail & Related papers (2023-02-27T15:55:37Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Batch Bayesian Optimization via Particle Gradient Flows [0.5735035463793008]
We show how to find global optima of objective functions which are only available as a black-box or are expensive to evaluate.
We construct a new function based on multipoint expected probability which is over the space of probability measures.
arXiv Detail & Related papers (2022-09-10T18:10:15Z) - Pre-training helps Bayesian optimization too [49.28382118032923]
We seek an alternative practice for setting functional priors.
In particular, we consider the scenario where we have data from similar functions that allow us to pre-train a tighter distribution a priori.
Our results show that our method is able to locate good hyper parameters at least 3 times more efficiently than the best competing methods.
arXiv Detail & Related papers (2022-07-07T04:42:54Z) - Trusted-Maximizers Entropy Search for Efficient Bayesian Optimization [39.824086260578646]
This paper presents a novel trusted-maximizers entropy search (TES) acquisition function.
It measures how much an input contributes to the information gain on a query over a finite set of trusted maximizers.
arXiv Detail & Related papers (2021-07-30T07:25:07Z) - Many Objective Bayesian Optimization [0.0]
Multi-objective Bayesian optimization (MOBO) is a set of methods that has been successfully applied for the simultaneous optimization of black-boxes.
In particular, MOBO methods have problems when the number of objectives in a multi-objective optimization problem are 3 or more, which is the many objective setting.
We show empirical evidence in a set of toy, synthetic, benchmark and real experiments that GPs predictive distributions of the effectiveness of the metric and the algorithm.
arXiv Detail & Related papers (2021-07-08T21:57:07Z) - Bayesian Algorithm Execution: Estimating Computable Properties of
Black-box Functions Using Mutual Information [78.78486761923855]
In many real world problems, we want to infer some property of an expensive black-box function f, given a budget of T function evaluations.
We present a procedure, InfoBAX, that sequentially chooses queries that maximize mutual information with respect to the algorithm's output.
On these problems, InfoBAX uses up to 500 times fewer queries to f than required by the original algorithm.
arXiv Detail & Related papers (2021-04-19T17:22:11Z) - Provably Efficient Reward-Agnostic Navigation with Linear Value
Iteration [143.43658264904863]
We show how iteration under a more standard notion of low inherent Bellman error, typically employed in least-square value-style algorithms, can provide strong PAC guarantees on learning a near optimal value function.
We present a computationally tractable algorithm for the reward-free setting and show how it can be used to learn a near optimal policy for any (linear) reward function.
arXiv Detail & Related papers (2020-08-18T04:34:21Z) - Incorporating Expert Prior in Bayesian Optimisation via Space Warping [54.412024556499254]
In big search spaces the algorithm goes through several low function value regions before reaching the optimum of the function.
One approach to subside this cold start phase is to use prior knowledge that can accelerate the optimisation.
In this paper, we represent the prior knowledge about the function optimum through a prior distribution.
The prior distribution is then used to warp the search space in such a way that space gets expanded around the high probability region of function optimum and shrinks around low probability region of optimum.
arXiv Detail & Related papers (2020-03-27T06:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.