論文の概要: Zero-failure testing of binary classifiers
- arxiv url: http://arxiv.org/abs/2407.03979v1
- Date: Thu, 4 Jul 2024 14:51:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 17:33:44.122749
- Title: Zero-failure testing of binary classifiers
- Title(参考訳): 二元分類器のゼロフェイル検定
- Authors: Ioannis Ivrissimtzis, Matthew Houliston, Shauna Concannon, Graham Roberts,
- Abstract要約: 本稿では,ゼロフェイルテストから得られた性能指標を用いてバイナリ分類器の評価を行う。
提案手法の主な特徴は2種類の誤差の非対称な処理である。
本稿では,対象者が法定年齢閾値を超えているかどうかを判断するための年齢推定問題に関する提案手法について述べる。
- 参考スコア(独自算出の注目度): 0.3749861135832073
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose using performance metrics derived from zero-failure testing to assess binary classifiers. The principal characteristic of the proposed approach is the asymmetric treatment of the two types of error. In particular, we construct a test set consisting of positive and negative samples, set the operating point of the binary classifier at the lowest value that will result to correct classifications of all positive samples, and use the algorithm's success rate on the negative samples as a performance measure. A property of the proposed approach, setting it apart from other commonly used testing methods, is that it allows the construction of a series of tests of increasing difficulty, corresponding to a nested sequence of positive sample test sets. We illustrate the proposed method on the problem of age estimation for determining whether a subject is above a legal age threshold, a problem that exemplifies the asymmetry of the two types of error. Indeed, misclassifying an under-aged subject is a legal and regulatory issue, while misclassifications of people above the legal age is an efficiency issue primarily concerning the commercial user of the age estimation system.
- Abstract(参考訳): 本稿では,ゼロフェイルテストから得られた性能指標を用いてバイナリ分類器の評価を行う。
提案手法の主な特徴は2種類の誤差の非対称な処理である。
特に、正と負のサンプルからなるテストセットを構築し、二項分類器の動作点を最低値に設定し、全ての正のサンプルの分類を正にし、そのアルゴリズムの成功率を性能指標として利用する。
提案手法の特性は、他の一般的な試験方法と異なり、正のサンプルテストセットのネストシーケンスに対応する難易度を増大させる一連のテストの構築を可能にすることである。
本稿では,2種類の誤差の非対称性を実証する問題として,対象が法的な年齢閾値を超えているかどうかを判断する年齢推定法を提案する。
実際、未成年者の誤分類は法的・規制上の問題であり、法律上の年齢以上の人々の誤分類は、主に年齢推定システムの商業ユーザに関する効率上の問題である。
関連論文リスト
- Centrality and Consistency: Two-Stage Clean Samples Identification for
Learning with Instance-Dependent Noisy Labels [87.48541631675889]
本稿では,2段階のクリーンサンプル識別手法を提案する。
まず,クリーンサンプルの早期同定にクラスレベルの特徴クラスタリング手法を用いる。
次に, 基底真理クラス境界に近い残余のクリーンサンプルについて, 一貫性に基づく新しい分類法を提案する。
論文 参考訳(メタデータ) (2022-07-29T04:54:57Z) - Hierarchical Semi-Supervised Contrastive Learning for
Contamination-Resistant Anomaly Detection [81.07346419422605]
異常検出は、通常のデータ分布から逸脱したサンプルを特定することを目的としている。
コントラスト学習は、異常の効果的な識別を可能にする表現のサンプル化に成功している。
汚染耐性異常検出のための新しい階層型半教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-24T18:49:26Z) - Mixture Proportion Estimation and PU Learning: A Modern Approach [47.34499672878859]
正の例とラベルなしの例のみを考えると、正逆負の正の正の分類器を正確に見積もることを望むかもしれない。
両方の問題の古典的な方法は、高次元の設定で分解される。
BBE(Best Bin Estimation)とCVIR(Value Ignoring Risk)の2つの簡単な手法を提案する。
論文 参考訳(メタデータ) (2021-11-01T14:42:23Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
暗黙のフィードバックから学ぶことは、一流問題の難しい性質のために困難です。
ほとんどの従来の方法は、一級問題に対処するためにペアワイズランキングアプローチとネガティブサンプラーを使用します。
本論文では,ポイントワイズと同等の収束速度を実現する学習対ランクアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-11T03:38:16Z) - Binary Classification: Counterbalancing Class Imbalance by Applying
Regression Models in Combination with One-Sided Label Shifts [0.4970364068620607]
クラス不均衡の問題に対処する新しい手法を提案する。
我々は、対応する回帰タスクが均衡するように、負と正の目標ラベルのセットを生成する。
我々は,複数の公開データセットに対するアプローチを評価し,提案手法を最もポピュラーなオーバーサンプリング手法と比較した。
論文 参考訳(メタデータ) (2020-11-30T13:24:47Z) - ATRO: Adversarial Training with a Rejection Option [10.36668157679368]
本稿では, 逆例による性能劣化を軽減するために, 拒否オプション付き分類フレームワークを提案する。
分類器と拒否関数を同時に適用することにより、テストデータポイントの分類に自信が不十分な場合に分類を控えることができる。
論文 参考訳(メタデータ) (2020-10-24T14:05:03Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
ディープニューラルネットワークは教師付き学習タスクに有効であるが、脆弱であることが示されている。
本稿では、生成モデルを利用して、分類器が一般化に失敗するインスタンスを特定し、特徴付ける。
我々のアプローチは、トレーニングセットのクラスラベルに依存しないため、半教師付きでトレーニングされたモデルに適用できる。
論文 参考訳(メタデータ) (2020-10-05T22:13:21Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z) - Training conformal predictors [0.0]
共形予測の効率基準は、一般に、与えられた共形予測器の性能を評価するために用いられる。
そこで本研究では,そのような基準をエンフラーン分類器に活用できるかどうかを考察する。
論文 参考訳(メタデータ) (2020-05-14T14:47:30Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。