論文の概要: TALENT: A Tabular Analytics and Learning Toolbox
- arxiv url: http://arxiv.org/abs/2407.04057v1
- Date: Thu, 4 Jul 2024 16:57:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-07-08 17:14:12.626007
- Title: TALENT: A Tabular Analytics and Learning Toolbox
- Title(参考訳): TALENT: 語彙分析と学習ツールボックス
- Authors: Si-Yang Liu, Hao-Run Cai, Qi-Le Zhou, Han-Jia Ye,
- Abstract要約: 本稿では,表型手法の活用,分析,比較を行うためにTALENT (Tabular Analytics and LEarNing Toolbox) という汎用的なディープラーニングツールボックスを提案する。
TALENTは、様々なエンコーディングおよび正規化モジュールに関連する、20以上の深い表層予測手法の広範なコレクションを含んでいる。
本稿では,ツールボックスの設計と機能について述べるとともに,その実践的応用をいくつかのケーススタディを通じて説明し,ツールボックスをベースとした各種手法の性能について検討する。
- 参考スコア(独自算出の注目度): 24.921160457502644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tabular data is one of the most common data sources in machine learning. Although a wide range of classical methods demonstrate practical utilities in this field, deep learning methods on tabular data are becoming promising alternatives due to their flexibility and ability to capture complex interactions within the data. Considering that deep tabular methods have diverse design philosophies, including the ways they handle features, design learning objectives, and construct model architectures, we introduce a versatile deep-learning toolbox called TALENT (Tabular Analytics and LEarNing Toolbox) to utilize, analyze, and compare tabular methods. TALENT encompasses an extensive collection of more than 20 deep tabular prediction methods, associated with various encoding and normalization modules, and provides a unified interface that is easily integrable with new methods as they emerge. In this paper, we present the design and functionality of the toolbox, illustrate its practical application through several case studies, and investigate the performance of various methods fairly based on our toolbox. Code is available at https://github.com/qile2000/LAMDA-TALENT.
- Abstract(参考訳): タブラルデータ(Tabular data)は、機械学習において最も一般的なデータソースの1つである。
この分野では、様々な古典的手法が実用性を示しているが、その柔軟性とデータ内の複雑な相互作用を捉える能力により、表形式のデータに対するディープラーニング手法は有望な代替手段になりつつある。
深い表型手法には,特徴の扱い方,設計学習の目的,モデルアーキテクチャの構築など,多種多様な設計哲学が存在することを考慮し,表型手法の活用,分析,比較を行うためにTALENT(Tabular Analytics and LEarNing Toolbox)と呼ばれる汎用的なディープラーニングツールボックスを導入する。
TALENTは、様々なエンコーディングおよび正規化モジュールに関連する、20以上の深い表層予測メソッドの広範なコレクションを含み、新しいメソッドが現れると容易に統合可能な統一インターフェースを提供する。
本稿では,ツールボックスの設計と機能について述べるとともに,その実践的応用をいくつかのケーススタディを通じて説明し,ツールボックスをベースとした各種手法の性能について検討する。
コードはhttps://github.com/qile2000/LAMDA-TALENTで公開されている。
関連論文リスト
- Representation Learning for Tabular Data: A Comprehensive Survey [23.606506938919605]
行と列として構造化されたタブラルデータは、機械学習の分類と回帰アプリケーションにおいて最も一般的なデータタイプの一つである。
ディープニューラルネットワーク(DNN)は、最近、表現学習の能力を通じて有望な結果を実証した。
既存の手法を一般化能力に応じて3つの主要なカテゴリに分類する。
論文 参考訳(メタデータ) (2025-04-17T17:58:23Z) - OpenTAD: A Unified Framework and Comprehensive Study of Temporal Action Detection [86.30994231610651]
時間的行動検出(TAD)は、人間の行動を特定し、その時間的境界を動画内でローカライズすることを目的とした、基本的なビデオ理解タスクである。
我々は16種類のTADメソッドと9つの標準データセットをモジュール化したTADフレームワークであるtextbfOpenTADを提案する。
1つのモジュールを別の設計で置き換える、フィーチャベースのTADモデルをエンドツーエンドモードでトレーニングする、あるいは2つのモジュールを切り替える、という最小限の労力が必要になります。
論文 参考訳(メタデータ) (2025-02-27T18:32:27Z) - Revisiting Nearest Neighbor for Tabular Data: A Deep Tabular Baseline Two Decades Later [76.66498833720411]
K$-nearest neighbors (KNN) はもともと,インスタンス間のセマンティックな類似性を捉えるために線形投影を学習するために設計されたものだ。
意外なことに、SGDを用いたNAAの実装と次元減少のない実装は、表データの良好な性能をすでに達成しています。
本稿では、損失関数、予測戦略、深いアーキテクチャなど、これらの改善の背景にある要因を分析して、論文を締めくくる。
論文 参考訳(メタデータ) (2024-07-03T16:38:57Z) - A Closer Look at Deep Learning on Tabular Data [52.50778536274327]
タブラルデータは、機械学習の様々な領域で広く使われている。
Deep Neural Network(DNN)ベースの手法は、ツリーベースに匹敵する有望なパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-07-01T04:24:07Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain(ATC)は、大規模言語モデル(LLM)がマルチツールユーザとして機能することを可能にするフレームワークである。
次に,ツールの範囲を拡大するために,ブラックボックス探索法を提案する。
包括的な評価のために、ToolFlowという挑戦的なベンチマークを構築しました。
論文 参考訳(メタデータ) (2024-05-26T11:40:58Z) - Towards Completeness-Oriented Tool Retrieval for Large Language Models [60.733557487886635]
現実世界のシステムは多種多様なツールを組み込んでおり、全てのツールを大規模言語モデルに入力することは不可能である。
既存のツール検索手法は主にユーザクエリとツール記述間のセマンティックマッチングに焦点を当てている。
我々は,ユーザクエリとツール記述のセマンティックな類似性だけでなく,ツールの協調的情報も考慮した,新しいモデル診断型協調学習型ツール検索手法であるCOLTを提案する。
論文 参考訳(メタデータ) (2024-05-25T06:41:23Z) - Generative Multi-Modal Knowledge Retrieval with Large Language Models [75.70313858231833]
マルチモーダル知識検索のための革新的なエンドツーエンド生成フレームワークを提案する。
我々のフレームワークは,大規模言語モデル(LLM)が仮想知識ベースとして効果的に機能するという事実を生かしている。
強いベースラインと比較すると,すべての評価指標に対して3.0%から14.6%の大幅な改善が見られた。
論文 参考訳(メタデータ) (2024-01-16T08:44:29Z) - Relation-aware Ensemble Learning for Knowledge Graph Embedding [68.94900786314666]
我々は,既存の手法を関係性に配慮した方法で活用し,アンサンブルを学習することを提案する。
関係認識アンサンブルを用いてこれらのセマンティクスを探索すると、一般的なアンサンブル法よりもはるかに大きな検索空間が得られる。
本稿では,リレーショナルなアンサンブル重みを独立に検索する分割探索合成アルゴリズムRelEns-DSCを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:40:12Z) - TabLLM: Few-shot Classification of Tabular Data with Large Language
Models [66.03023402174138]
大規模言語モデルのゼロショットおよび少数ショット分類への応用について検討する。
テンプレートやテーブル・ツー・テキストモデル,大規模言語モデルなど,いくつかのシリアライズ手法を評価する。
このアプローチは、勾配木のような強力な伝統的なベースラインとも競合する。
論文 参考訳(メタデータ) (2022-10-19T17:08:13Z) - Semantic Annotation for Tabular Data [9.207355077507263]
c2$は概念マッパーのためのコラムであり、アンサンブルによる最大確率推定アプローチに基づいている。
9つのデータセット上でC2$オーバーのテクニックの有効性を実証する。
論文 参考訳(メタデータ) (2020-12-15T20:08:19Z) - Towards a Flexible Embedding Learning Framework [15.604564543883122]
本稿では,学習表現に組み込むことができる関係性の観点から柔軟な埋め込み学習フレームワークを提案する。
サンプリング機構は、入力と出力埋め込みによって捕捉された情報との直接接続を確立するために慎重に設計される。
実験の結果,提案するフレームワークは,関連エンティティ・リレーショナル・マトリクスのセットと合わせて,様々なデータマイニングタスクにおける既存の最先端アプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2020-09-23T08:00:56Z) - An analysis on the use of autoencoders for representation learning:
fundamentals, learning task case studies, explainability and challenges [11.329636084818778]
多くの機械学習タスクでは、データの優れた表現を学ぶことが、優れたパフォーマンスのソリューションを構築するための鍵となる。
可視化のためのデータ埋め込み,画像認識,セマンティックハッシュ,異常行動の検出,インスタンス生成など,一連の学習課題を提示する。
オートエンコーダを唯一の学習方法として用いた各タスクに対して,解を提案する。
論文 参考訳(メタデータ) (2020-05-21T08:41:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。