EMPL: A novel Efficient Meta Prompt Learning Framework for Few-shot Unsupervised Domain Adaptation
- URL: http://arxiv.org/abs/2407.04066v1
- Date: Thu, 4 Jul 2024 17:13:06 GMT
- Title: EMPL: A novel Efficient Meta Prompt Learning Framework for Few-shot Unsupervised Domain Adaptation
- Authors: Wanqi Yang, Haoran Wang, Lei Wang, Ge Song, Yang Gao,
- Abstract summary: We propose a novel Efficient Meta Prompt Learning Framework for FS-UDA.
Within this framework, we use pre-trained CLIP model as the feature learning base model.
Our method has the large improvement of at least 15.4% on 5-way 1-shot and 8.7% on 5-way 5-shot, compared with the state-of-the-art methods.
- Score: 22.586094394391747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot unsupervised domain adaptation (FS-UDA) utilizes few-shot labeled source domain data to realize effective classification in unlabeled target domain. However, current FS-UDA methods are still suffer from two issues: 1) the data from different domains can not be effectively aligned by few-shot labeled data due to the large domain gaps, 2) it is unstable and time-consuming to generalize to new FS-UDA tasks.To address this issue, we put forward a novel Efficient Meta Prompt Learning Framework for FS-UDA. Within this framework, we use pre-trained CLIP model as the feature learning base model. First, we design domain-shared prompt learning vectors composed of virtual tokens, which mainly learns the meta knowledge from a large number of meta tasks to mitigate domain gaps. Secondly, we also design a task-shared prompt learning network to adaptively learn specific prompt vectors for each task, which aims to realize fast adaptation and task generalization. Thirdly, we learn a task-specific cross-domain alignment projection and a task-specific classifier with closed-form solutions for each meta task, which can efficiently adapt the model to new tasks in one step. The whole learning process is formulated as a bilevel optimization problem, and a good initialization of model parameters is learned through meta-learning. Extensive experimental study demonstrates the promising performance of our framework on benchmark datasets. Our method has the large improvement of at least 15.4% on 5-way 1-shot and 8.7% on 5-way 5-shot, compared with the state-of-the-art methods. Also, the performance of our method on all the test tasks is more stable than the other methods.
Related papers
- Enhancing Visual Continual Learning with Language-Guided Supervision [76.38481740848434]
Continual learning aims to empower models to learn new tasks without forgetting previously acquired knowledge.
We argue that the scarce semantic information conveyed by the one-hot labels hampers the effective knowledge transfer across tasks.
Specifically, we use PLMs to generate semantic targets for each class, which are frozen and serve as supervision signals.
arXiv Detail & Related papers (2024-03-24T12:41:58Z) - UDApter -- Efficient Domain Adaptation Using Adapters [29.70751969196527]
We propose two methods to make unsupervised domain adaptation more parameter efficient.
The first method deconstructs UDA into a two-step process: first by adding a domain adapter to learn domain-invariant information.
We are within 0.85% F1 for natural language inference task, by fine-tuning only a fraction of the full model parameters.
arXiv Detail & Related papers (2023-02-07T02:04:17Z) - MultiMatch: Multi-task Learning for Semi-supervised Domain Generalization [55.06956781674986]
We resort to solving the semi-supervised domain generalization task, where there are a few label information in each source domain.
We propose MultiMatch, extending FixMatch to the multi-task learning framework, producing the high-quality pseudo-label for SSDG.
A series of experiments validate the effectiveness of the proposed method, and it outperforms the existing semi-supervised methods and the SSDG method on several benchmark DG datasets.
arXiv Detail & Related papers (2022-08-11T14:44:33Z) - TOOD: Task-aligned One-stage Object Detection [41.43371563426291]
One-stage object detection is commonly implemented by optimizing two sub-tasks: object classification and localization.
We propose a Task-aligned One-stage Object Detection (TOOD) that explicitly aligns the two tasks in a learning-based manner.
Experiments are conducted on MS-COCO, where TOOD achieves a 51.1 AP at single-model single-scale testing.
arXiv Detail & Related papers (2021-08-17T17:00:01Z) - Cross-Domain Few-Shot Classification via Adversarial Task Augmentation [16.112554109446204]
Few-shot classification aims to recognize unseen classes with few labeled samples from each class.
Many meta-learning models for few-shot classification elaborately design various task-shared inductive bias (meta-knowledge) to solve such tasks.
In this work, we aim to improve the robustness of the inductive bias through task augmentation.
arXiv Detail & Related papers (2021-04-29T14:51:53Z) - Meta-Regularization by Enforcing Mutual-Exclusiveness [0.8057006406834467]
We propose a regularization technique for meta-learning models that gives the model designer more control over the information flow during meta-training.
Our proposed regularization function shows an accuracy boost of $sim$ $36%$ on the Omniglot dataset.
arXiv Detail & Related papers (2021-01-24T22:57:19Z) - Low-Resource Domain Adaptation for Compositional Task-Oriented Semantic
Parsing [85.35582118010608]
Task-oriented semantic parsing is a critical component of virtual assistants.
Recent advances in deep learning have enabled several approaches to successfully parse more complex queries.
We propose a novel method that outperforms a supervised neural model at a 10-fold data reduction.
arXiv Detail & Related papers (2020-10-07T17:47:53Z) - Fast Few-Shot Classification by Few-Iteration Meta-Learning [173.32497326674775]
We introduce a fast optimization-based meta-learning method for few-shot classification.
Our strategy enables important aspects of the base learner objective to be learned during meta-training.
We perform a comprehensive experimental analysis, demonstrating the speed and effectiveness of our approach.
arXiv Detail & Related papers (2020-10-01T15:59:31Z) - Prior Guided Feature Enrichment Network for Few-Shot Segmentation [64.91560451900125]
State-of-the-art semantic segmentation methods require sufficient labeled data to achieve good results.
Few-shot segmentation is proposed to tackle this problem by learning a model that quickly adapts to new classes with a few labeled support samples.
Theses frameworks still face the challenge of generalization ability reduction on unseen classes due to inappropriate use of high-level semantic information.
arXiv Detail & Related papers (2020-08-04T10:41:32Z) - Meta Reinforcement Learning with Autonomous Inference of Subtask
Dependencies [57.27944046925876]
We propose and address a novel few-shot RL problem, where a task is characterized by a subtask graph.
Instead of directly learning a meta-policy, we develop a Meta-learner with Subtask Graph Inference.
Our experiment results on two grid-world domains and StarCraft II environments show that the proposed method is able to accurately infer the latent task parameter.
arXiv Detail & Related papers (2020-01-01T17:34:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.