論文の概要: Meta-Learning and representation learner: A short theoretical note
- arxiv url: http://arxiv.org/abs/2407.04189v2
- Date: Mon, 22 Jul 2024 08:45:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 00:42:21.534376
- Title: Meta-Learning and representation learner: A short theoretical note
- Title(参考訳): メタラーニングと表現学習 : 短い理論ノート
- Authors: Mouad El Bouchattaoui,
- Abstract要約: メタ学習は機械学習のサブフィールドであり、目標は様々なタスクから学習できるモデルとアルゴリズムを開発することである。
特定のタスクを学習することに焦点を当てた従来の機械学習手法とは異なり、メタラーニングは、過去のタスクからの経験を活用して将来の学習を強化することを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Meta-learning, or "learning to learn," is a subfield of machine learning where the goal is to develop models and algorithms that can learn from various tasks and improve their learning process over time. Unlike traditional machine learning methods focusing on learning a specific task, meta-learning aims to leverage experience from previous tasks to enhance future learning. This approach is particularly beneficial in scenarios where the available data for a new task is limited, but there exists abundant data from related tasks. By extracting and utilizing the underlying structure and patterns across these tasks, meta-learning algorithms can achieve faster convergence and better performance with fewer data. The following notes are mainly inspired from \cite{vanschoren2018meta}, \cite{baxter2019learning}, and \cite{maurer2005algorithmic}.
- Abstract(参考訳): メタラーニング(メタラーニング、メタラーニング・トゥ・ラーニング)は、機械学習のサブフィールドであり、様々なタスクから学習し、時間の経過とともに学習プロセスを改善するモデルとアルゴリズムを開発することを目的としている。
特定のタスクを学習することに焦点を当てた従来の機械学習手法とは異なり、メタラーニングは、過去のタスクからの経験を活用して将来の学習を強化することを目的としている。
このアプローチは、新しいタスクの利用可能なデータが限られているシナリオでは特に有用であるが、関連するタスクから豊富なデータが存在する。
これらのタスクの根底にある構造とパターンを抽出し活用することにより、メタ学習アルゴリズムは、少ないデータでより高速な収束とより良いパフォーマンスを達成することができる。
以下は、主に \cite{vanschoren2018meta}、 \cite{baxter2019learning}、および \cite{maurer2005algorithmic}から着想を得たものである。
関連論文リスト
- When Meta-Learning Meets Online and Continual Learning: A Survey [39.53836535326121]
メタ学習は学習アルゴリズムを最適化するためのデータ駆動型アプローチである。
継続的な学習とオンライン学習はどちらも、ストリーミングデータでモデルを漸進的に更新する。
本稿では,一貫した用語と形式記述を用いて,様々な問題設定を整理する。
論文 参考訳(メタデータ) (2023-11-09T09:49:50Z) - Learning and Retrieval from Prior Data for Skill-based Imitation
Learning [47.59794569496233]
従来のデータから時間的に拡張された感触者スキルを抽出する,スキルベースの模倣学習フレームワークを開発した。
新規タスクの性能を著しく向上させる重要な設計選択をいくつか挙げる。
論文 参考訳(メタデータ) (2022-10-20T17:34:59Z) - Learning an Explicit Hyperparameter Prediction Function Conditioned on
Tasks [62.63852372239708]
メタ学習は、観察されたタスクから機械学習の学習方法論を学び、新しいクエリタスクに一般化することを目的としている。
我々は、これらの学習手法を、全てのトレーニングタスクで共有される明示的なハイパーパラメータ予測関数の学習として解釈する。
このような設定は、メタ学習方法論が多様なクエリタスクに柔軟に適合できることを保証する。
論文 参考訳(メタデータ) (2021-07-06T04:05:08Z) - Variable-Shot Adaptation for Online Meta-Learning [123.47725004094472]
従来のタスクから静的データにまたがるメタラーニングによって,少数の固定された例から新しいタスクを学習する問題について検討する。
メタラーニングは,従来の教師付き手法に比べて,ラベルの総数が少なく,累積性能も高いタスクセットを解く。
これらの結果から,メタラーニングは,一連の問題を継続的に学習し,改善する学習システムを構築する上で重要な要素であることが示唆された。
論文 参考訳(メタデータ) (2020-12-14T18:05:24Z) - Meta-learning the Learning Trends Shared Across Tasks [123.10294801296926]
グラディエントベースのメタ学習アルゴリズムは、限られたデータで新しいタスクに素早く適応する。
既存のメタ学習アプローチは、適応中の現在のタスク情報にのみ依存する。
パターン認識型メタラーニング手法を提案する。
論文 参考訳(メタデータ) (2020-10-19T08:06:47Z) - A Comprehensive Overview and Survey of Recent Advances in Meta-Learning [0.0]
メタラーニングはラーニング・トゥ・ラーン(Learning-to-Lern)とも呼ばれる。
メタラーニング手法は,ブラックボックスメタラーニング,メトリックベースメタラーニング,階層型メタラーニング,ベイズ的メタラーニングフレームワークである。
論文 参考訳(メタデータ) (2020-04-17T03:11:08Z) - Meta-Learning in Neural Networks: A Survey [4.588028371034406]
本調査では,現代メタラーニングの展望について述べる。
まずメタラーニングの定義について議論し、関連する分野について位置づける。
そこで我々はメタラーニング手法の空間をより包括的に分析する新しい分類法を提案する。
論文 参考訳(メタデータ) (2020-04-11T16:34:24Z) - Provable Meta-Learning of Linear Representations [114.656572506859]
我々は、複数の関連するタスクから共通の機能の集合を学習し、その知識を新しい未知のタスクに転送する、という2つの課題に対処する、高速でサンプル効率のアルゴリズムを提供する。
また、これらの線形特徴を学習する際のサンプルの複雑さに関する情報理論の下限も提供する。
論文 参考訳(メタデータ) (2020-02-26T18:21:34Z) - Unraveling Meta-Learning: Understanding Feature Representations for
Few-Shot Tasks [55.66438591090072]
メタラーニングの基礎となる力学と、メタラーニングを用いて訓練されたモデルと古典的に訓練されたモデルの違いをよりよく理解する。
数ショット分類のための標準訓練ルーチンの性能を高める正則化器を開発した。
論文 参考訳(メタデータ) (2020-02-17T03:18:45Z) - Revisiting Meta-Learning as Supervised Learning [69.2067288158133]
メタラーニングと従来の教師付き学習の関連性を再考し,強化することで,原則的,統一的なフレームワークの提供を目指す。
タスク固有のデータセットとターゲットモデルを(機能、ラベル)サンプルとして扱うことで、多くのメタ学習アルゴリズムを教師付き学習のインスタンスに還元することができる。
この視点は、メタラーニングを直感的で実践的なフレームワークに統一するだけでなく、教師付き学習から直接洞察を伝達してメタラーニングを改善することができる。
論文 参考訳(メタデータ) (2020-02-03T06:13:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。