論文の概要: TimeLDM: Latent Diffusion Model for Unconditional Time Series Generation
- arxiv url: http://arxiv.org/abs/2407.04211v2
- Date: Fri, 13 Sep 2024 03:58:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 22:57:51.440047
- Title: TimeLDM: Latent Diffusion Model for Unconditional Time Series Generation
- Title(参考訳): TimeLDM:無条件時系列生成のための潜時拡散モデル
- Authors: Jian Qian, Bingyu Xie, Biao Wan, Minhao Li, Miao Sun, Patrick Yin Chiang,
- Abstract要約: 時系列生成は意思決定システムにおいて重要な研究課題である。
最近のアプローチでは、時系列情報をモデル化するために、データ空間での学習に焦点を当てている。
高品質な時系列生成のための新しい遅延拡散モデルであるTimeLDMを提案する。
- 参考スコア(独自算出の注目度): 2.4454605633840143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series generation is a crucial research topic in the area of decision-making systems, which can be particularly important in domains like autonomous driving, healthcare, and, notably, robotics. Recent approaches focus on learning in the data space to model time series information. However, the data space often contains limited observations and noisy features. In this paper, we propose TimeLDM, a novel latent diffusion model for high-quality time series generation. TimeLDM is composed of a variational autoencoder that encodes time series into an informative and smoothed latent content and a latent diffusion model operating in the latent space to generate latent information. We evaluate the ability of our method to generate synthetic time series with simulated and real-world datasets and benchmark the performance against existing state-of-the-art methods. Qualitatively and quantitatively, we find that the proposed TimeLDM persistently delivers high-quality generated time series. For example, TimeLDM achieves new state-of-the-art results on the simulated benchmarks and an average improvement of 55% in Discriminative score with all benchmarks. Further studies demonstrate that our method yields more robust outcomes across various lengths of time series data generation. Especially, for the Context-FID score and Discriminative score, TimeLDM realizes significant improvements of 80% and 50%, respectively. The code will be released after publication.
- Abstract(参考訳): 時系列生成は意思決定システムにおいて重要な研究課題であり、自動運転やヘルスケア、特にロボット工学といった分野において特に重要である。
最近のアプローチでは、時系列情報をモデル化するために、データ空間での学習に焦点を当てている。
しかし、データ空間はしばしば限られた観測とノイズのある特徴を含んでいる。
本稿では,高品質な時系列生成のための新しい遅延拡散モデルであるTimeLDMを提案する。
TimeLDMは、時系列を情報的でスムーズな潜時コンテンツに符号化する変分オートエンコーダと、潜時空間で動作する潜時拡散モデルとから構成され、潜時情報を生成する。
シミュレーションおよび実世界のデータセットを用いて合成時系列を生成する手法の有効性を評価し,既存の最先端手法と比較して性能をベンチマークする。
定性的かつ定量的に、提案するTimeLDMは、高品質な生成時系列を持続的に提供する。
例えば、TimeLDMはシミュレーションされたベンチマークで新しい最先端の結果を達成し、すべてのベンチマークで識別スコアが平均55%向上した。
さらなる研究により,本手法は時系列データ生成の様々な期間にわたって,より堅牢な結果をもたらすことが示された。
特に、Context-FIDスコアと差別的スコアでは、TimeLDMは、それぞれ80%と50%の大幅な改善を実現している。
コードは公開後に公開される。
関連論文リスト
- Hierarchical Multimodal LLMs with Semantic Space Alignment for Enhanced Time Series Classification [4.5939667818289385]
HiTimeは階層的なマルチモーダルモデルであり、時間的情報を大きな言語モデルにシームレスに統合する。
本研究は, 時間的特徴をLCMに組み込むことにより, 時系列解析の進歩に寄与する可能性が示唆された。
論文 参考訳(メタデータ) (2024-10-24T12:32:19Z) - Recurrent Neural Goodness-of-Fit Test for Time Series [8.22915954499148]
時系列データは、金融や医療など、さまざまな分野において重要である。
従来の評価基準は、時間的依存関係と潜在的な特徴の高次元性のために不足している。
Recurrent Neural (RENAL) Goodness-of-Fit testは,生成時系列モデルを評価するための新しい,統計的に厳密なフレームワークである。
論文 参考訳(メタデータ) (2024-10-17T19:32:25Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
本稿では,ニューラルPDEソルバの原理に着想を得た新しいLMTFモデルであるPDETimeを提案する。
7つの異なる時間的実世界のLMTFデータセットを用いた実験により、PDETimeがデータ固有の性質に効果的に適応できることが判明した。
論文 参考訳(メタデータ) (2024-02-25T17:39:44Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z) - MADS: Modulated Auto-Decoding SIREN for time series imputation [9.673093148930874]
我々は,暗黙のニューラル表現に基づく時系列計算のための新しい自動デコードフレームワークMADSを提案する。
実世界の2つのデータセット上で本モデルを評価し,時系列計算における最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-07-03T09:08:47Z) - TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series [61.436361263605114]
時系列データは、研究者と産業組織間のデータの共有を妨げるため、しばしば不足または非常に敏感である。
本稿では,合成時系列の生成モデリングのためのオープンソースフレームワークである時系列生成モデリング(TSGM)を紹介する。
論文 参考訳(メタデータ) (2023-05-19T10:11:21Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Deep Generative model with Hierarchical Latent Factors for Time Series
Anomaly Detection [40.21502451136054]
本研究は、時系列異常検出のための新しい生成モデルであるDGHLを提示する。
トップダウンの畳み込みネットワークは、新しい階層的な潜在空間を時系列ウィンドウにマッピングし、時間ダイナミクスを利用して情報を効率的にエンコードする。
提案手法は,4つのベンチマーク・データセットにおいて,現在の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-02-15T17:19:44Z) - Towards Generating Real-World Time Series Data [52.51620668470388]
時系列データ生成のための新しい生成フレームワーク - RTSGANを提案する。
RTSGANは、時系列インスタンスと固定次元潜在ベクトルの間のマッピングを提供するエンコーダデコーダモジュールを学習する。
不足した値の時系列を生成するために、RTSGANに観測埋め込み層と決定・生成デコーダを更に装備する。
論文 参考訳(メタデータ) (2021-11-16T11:31:37Z) - Conditional GAN for timeseries generation [0.0]
実時間時系列データをモデル化するために,TSGAN(Time Series GAN)を提案する。
ベンチマーク時系列データベースから,70データセット上でTSGANを評価する。
論文 参考訳(メタデータ) (2020-06-30T02:19:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。