Graph Pooling via Ricci Flow
- URL: http://arxiv.org/abs/2407.04236v1
- Date: Fri, 5 Jul 2024 03:26:37 GMT
- Title: Graph Pooling via Ricci Flow
- Authors: Amy Feng, Melanie Weber,
- Abstract summary: We introduce a graph pooling operator (ORC-Pool) which utilizes a characterization of the graph's geometry via Ollivier's discrete Ricci curvature and an associated geometric flow.
ORC-Pool extends such clustering approaches to attributed graphs, allowing for the integration of geometric coarsening into Graph Neural Networks as a pooling layer.
- Score: 1.1126342180866644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Machine Learning often involves the clustering of nodes based on similarity structure encoded in the graph's topology and the nodes' attributes. On homophilous graphs, the integration of pooling layers has been shown to enhance the performance of Graph Neural Networks by accounting for inherent multi-scale structure. Here, similar nodes are grouped together to coarsen the graph and reduce the input size in subsequent layers in deeper architectures. In both settings, the underlying clustering approach can be implemented via graph pooling operators, which often rely on classical tools from Graph Theory. In this work, we introduce a graph pooling operator (ORC-Pool), which utilizes a characterization of the graph's geometry via Ollivier's discrete Ricci curvature and an associated geometric flow. Previous Ricci flow based clustering approaches have shown great promise across several domains, but are by construction unable to account for similarity structure encoded in the node attributes. However, in many ML applications, such information is vital for downstream tasks. ORC-Pool extends such clustering approaches to attributed graphs, allowing for the integration of geometric coarsening into Graph Neural Networks as a pooling layer.
Related papers
- SSHPool: The Separated Subgraph-based Hierarchical Pooling [47.78745802682822]
We develop a novel local graph pooling method, namely the Separated Subgraph-based Hierarchical Pooling (SSH) for graph classification.
We individually employ the local graph convolution units as the local structure to further compress each subgraph into a coarsened node.
We develop an end-to-end GNN framework associated with the SSHPool module for graph classification.
arXiv Detail & Related papers (2024-03-24T13:03:35Z) - Learning Optimal Graph Filters for Clustering of Attributed Graphs [20.810096547938166]
Many real-world systems can be represented as graphs where the different entities in the system are presented by nodes and their interactions by edges.
An important task in studying large datasets with graphical structure is graph clustering.
We introduce a graph signal processing based approach, where we learn the parameters of Finite Impulse Response (FIR) and Autoregressive Moving Average (ARMA) graph filters optimized for clustering.
arXiv Detail & Related papers (2022-11-09T01:49:23Z) - Higher-order Clustering and Pooling for Graph Neural Networks [77.47617360812023]
Graph Neural Networks achieve state-of-the-art performance on a plethora of graph classification tasks.
HoscPool is a clustering-based graph pooling operator that captures higher-order information hierarchically.
We evaluate HoscPool on graph classification tasks and its clustering component on graphs with ground-truth community structure.
arXiv Detail & Related papers (2022-09-02T09:17:10Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
This paper presents a cross-view graph pooling (Co-Pooling) method to better exploit crucial graph structure information.
Through cross-view interaction, edge-view pooling and node-view pooling seamlessly reinforce each other to learn more informative graph-level representations.
arXiv Detail & Related papers (2021-09-24T08:01:23Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
We propose a Graph Multiset Transformer (GMT) that captures the interaction between nodes according to their structural dependencies.
Our experimental results show that GMT significantly outperforms state-of-the-art graph pooling methods on graph classification benchmarks.
arXiv Detail & Related papers (2021-02-23T07:45:58Z) - Factorizable Graph Convolutional Networks [90.59836684458905]
We introduce a novel graph convolutional network (GCN) that explicitly disentangles intertwined relations encoded in a graph.
FactorGCN takes a simple graph as input, and disentangles it into several factorized graphs.
We evaluate the proposed FactorGCN both qualitatively and quantitatively on the synthetic and real-world datasets.
arXiv Detail & Related papers (2020-10-12T03:01:40Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - SimPool: Towards Topology Based Graph Pooling with Structural Similarity
Features [0.0]
This paper proposes two main contributions, the first is a differential module calculating structural similarity features based on the adjacency matrix.
The second main contribution is on integrating these features with a revisited pooling layer DiffPool arXiv:1806.08804 to propose a pooling layer referred to as SimPool.
Experimental results demonstrate that as part of an end-to-end Graph Neural Network architecture SimPool calculates node cluster assignments that resemble more to the locality.
arXiv Detail & Related papers (2020-06-03T12:51:57Z) - Graph Neural Networks with Composite Kernels [60.81504431653264]
We re-interpret node aggregation from the perspective of kernel weighting.
We present a framework to consider feature similarity in an aggregation scheme.
We propose feature aggregation as the composition of the original neighbor-based kernel and a learnable kernel to encode feature similarities in a feature space.
arXiv Detail & Related papers (2020-05-16T04:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.