論文の概要: Machine Learning for Complex Systems with Abnormal Pattern by Exception Maximization Outlier Detection Method
- arxiv url: http://arxiv.org/abs/2407.04248v1
- Date: Fri, 5 Jul 2024 04:30:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 14:41:15.133057
- Title: Machine Learning for Complex Systems with Abnormal Pattern by Exception Maximization Outlier Detection Method
- Title(参考訳): 例外最大出力検出法による異常パターンを有する複雑システムの機械学習
- Authors: Zhikun Zhang, Yiting Duan, Xiangjun Wang, Mingyuan Zhang,
- Abstract要約: EMODMは2状態ガウス混合モデルに基づいており、異常検出において強い性能を示す。
我々は3相インバータの電流および電圧出力により,EMODMを用いた回路系の短絡パターンを検出した。
この2つの実生活データセットに対するEMODMの適用により,アルゴリズムの有効性と精度が示された。
- 参考スコア(独自算出の注目度): 14.272347551301458
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a novel fast online methodology for outlier detection called the exception maximization outlier detection method(EMODM), which employs probabilistic models and statistical algorithms to detect abnormal patterns from the outputs of complex systems. The EMODM is based on a two-state Gaussian mixture model and demonstrates strong performance in probability anomaly detection working on real-time raw data rather than using special prior distribution information. We confirm this using the synthetic data from two numerical cases. For the real-world data, we have detected the short circuit pattern of the circuit system using EMODM by the current and voltage output of a three-phase inverter. The EMODM also found an abnormal period due to COVID-19 in the insured unemployment data of 53 regions in the United States from 2000 to 2024. The application of EMODM to these two real-life datasets demonstrated the effectiveness and accuracy of our algorithm.
- Abstract(参考訳): 本稿では,確率モデルと統計的アルゴリズムを用いて複雑なシステムの出力から異常パターンを検出する,例外最大化外乱検出法(EMODM)と呼ばれる,新しい高速オンライン外乱検出手法を提案する。
The EMODM is based on a two-state Gaussian mix model and showed strong performance in probability anomaly detection working on real-time raw data。
2つの数値ケースの合成データを用いてこれを確認した。
実世界のデータに対して,三相インバータの電流および電圧出力により,EMODMを用いて回路系の短絡パターンを検出した。
EMODMはまた、2000年から2024年までの米国の53地域の保険失業データに、COVID-19による異常期間があることも発見した。
この2つの実生活データセットに対するEMODMの適用により,アルゴリズムの有効性と精度が示された。
関連論文リスト
- Anomaly Detection of Tabular Data Using LLMs [54.470648484612866]
我々は,事前訓練された大規模言語モデル (LLM) がゼロショットバッチレベルの異常検出器であることを示す。
本稿では,実異常検出におけるLCMの潜在性を明らかにするために,エンドツーエンドの微調整手法を提案する。
論文 参考訳(メタデータ) (2024-06-24T04:17:03Z) - MAPL: Memory Augmentation and Pseudo-Labeling for Semi-Supervised Anomaly Detection [0.0]
メモリ拡張(Memory Augmentation)と擬似ラベル(Pseudo-Labeling, MAPL)と呼ばれる, 産業環境における表面欠陥検出のための新しいメソドロジーを導入する。
この手法は、まず異常シミュレーション戦略を導入し、希少または未知の異常型を認識するモデルの能力を著しく改善する。
入力データから直接異常領域を識別するために、MAPLによってエンドツーエンドの学習フレームワークが使用される。
論文 参考訳(メタデータ) (2024-05-10T02:26:35Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Anomaly Detection with Ensemble of Encoder and Decoder [2.8199078343161266]
電力網における異常検出は、電力系統に対するサイバー攻撃による異常を検出し、識別することを目的としている。
本稿では,複数のエンコーダとデコーダを用いて正規サンプルのデータ分布をモデル化し,新しい異常検出手法を提案する。
ネットワーク侵入と電力系統データセットの実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-03-11T15:49:29Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals [10.866594993485226]
本稿では,Deep Convolutional Autoencoding Memory Network (CAE-M) という,ディープラーニングに基づく新しい異常検出アルゴリズムを提案する。
我々はまず,最大平均離散値(MMD)を用いたマルチセンサデータの空間依存性を特徴付けるディープ畳み込みオートエンコーダを構築する。
そして,線形(自己回帰モデル)と非線形予測(注意を伴う大規模LSTM)からなるメモリネットワークを構築し,時系列データから時間依存性を捉える。
論文 参考訳(メタデータ) (2021-07-27T06:48:20Z) - Real-World Anomaly Detection by using Digital Twin Systems and
Weakly-Supervised Learning [3.0100975935933567]
本稿では, 産業環境における異常検出に対する弱い制御手法を提案する。
これらのアプローチでは、Digital Twinを使用して、機械の通常の動作をシミュレートするトレーニングデータセットを生成する。
提案手法の性能を,実世界のデータセットに応用した様々な最先端の異常検出アルゴリズムと比較した。
論文 参考訳(メタデータ) (2020-11-12T10:15:56Z) - Data Anomaly Detection for Structural Health Monitoring of Bridges using
Shapelet Transform [0.0]
多くの構造健康モニタリング(SHM)システムが、土木インフラを監視するために配備されている。
SHMシステムによって測定されたデータは、故障または故障したセンサーによって引き起こされる複数の異常によって影響を受ける傾向にある。
本稿では,SHMデータの異常を自律的に識別するために,Shapelet Transformという比較的新しい時系列表現を提案する。
論文 参考訳(メタデータ) (2020-08-31T01:11:04Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。